The GenerateOriginDestinationCostMatrix tool creates an origin-destination (OD) cost matrix from multiple origins to multiple destinations. An OD cost matrix is a table that contains the travel time and travel distance from each origin to each destination. Additionally, it ranks the destinations that each origin connects to in ascending order based on the minimum time or distance required to travel from that origin to each destination. The best path on the street network is discovered for each origin-destination pair, and the travel times and travel distances are stored as attributes of the output lines. Even though the lines are straight for performance reasons, they always store the travel time and travel distance along the street network, not straight-line distance.
You need to specify at least one origin and one destination to successfully execute the tool. You can load up to 1000 origins and 1000 destinations.
You can add up to 250 point barriers. You can add any number of line or polygon barriers, but line barriers cannot intersect more than 500 street features, and polygon barriers cannot intersect more than 2,000 features.
You can choose to use the road hierarchy when solving so that results are generated quicker than exact routes, but the solution may be somewhat less than optimal.
Regardless of whether the Use Hierarchy parameter is checked (True), hierarchy is always used when the straight-line distance between any pair of stops is greater than 50 miles (80.46 kilometers).
The straight-line distance between any origin-destination pair cannot be greater than 50 miles (80.46 kilometers) when the travel mode is of type walking, or when it is set to Custom and the Walking restriction is used.
If the distance between an input point and its nearest traversable street is greater than 12.42 miles (20 kilometers), the point is excluded from the analysis.
Parameter | Explanation |
---|---|
Origins |
Specify locations that function as starting points in generating the paths to destinations. You can add up to 1000 origins. When specifying the origins, you can set properties for each one, such as its name or the number of destinations to find from the origin, by using attributes. The origins can be specified with the following attributes Name— The name of the origin. The name can be an unique identifier for the origin. The name is included in the output lines (as the OriginName field) and in the output origins (as the Name field) and can be used to join additional information from the tool outputs to the attributes of your origins. If the name is not specified, a unique name prefixed with Location is automatically generated in the output origins. An auto-generated origin name is not included in the output lines. TargetDestinationCount— The maximum number of destinations that must be found for the origin. If a value is not specified, the value from the Number of Destinations to Find parameter is used. Cutoff— Specify the travel time or travel distance value at which to stop searching for destinations from the origin. Any destination beyond the cutoff value will not be considered. The value needs to be in the units specified by the Time Units parameter if the impedance attribute in your travel mode is time based or in the units specified by the Distance Units parameter if the impedance attribute in your travel mode is distance based. If a value is not specified, the value from the Cutoff parameter is used. CurbApproach— Specifiy the direction a vehicle may depart from the origin. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):
The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an origin on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to depart the origin from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to depart from an origin and not have a lane of traffic between the vehicle and the origin, you would choose Right side of vehicle (1) in the United States but Left side of vehicle (2) in the United Kingdom. |
Destinations |
Specify locations that function as ending points in generating the paths from origins. You can add up to 1000 destinations. When specifying the destinations, you can set properties for each one, such as its name, by using attributes. The destinations can be specified with the following attributes: Name— The name of the destination. The name can be an unique identifier for the destination. The name is included in the output lines (as the DestinationName field) and in the output destinations (as the Name field) and can be used to join additional information from the tool outputs to the attributes of your destinations. If the name is not specified, a unique name prefixed with Location is automatically generated in the output destinations. An auto-generated destination name is not included in the output lines. CurbApproach— Specifiy the direction a vehicle may depart from the origin. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):
The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an origin on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to depart the origin from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to depart from an origin and not have a lane of traffic between the vehicle and the origin, you would choose Right side of vehicle (1) in the United States but Left side of vehicle (2) in the United Kingdom. |
Travel_Mode (Optional) |
Specify the mode of transportation to model in the analysis. Travel modes are managed in ArcGIS Online and can be configured by the administrator of your organization to better reflect your organization's workflows. You need to specify the name of a travel mode supported by your organization. To get a list of supported travel mode names, run the GetTravelModes tool from the Utilities toolbox available under the same GIS Server connection you used to access the tool. The GetTravelModes tool adds a table, Supported Travel Modes, to the application. Any value in the Travel Mode Name field from the Supported Travel Modes table can be specified as input. You can also specify the value from Travel Mode Settings field as input. This speeds up the tool execution as the tool does not have to lookup the settings based on the travel mode name. The default value, Custom, allows you to configure your own travel mode using the custom travel mode parameters (UTurn at Junctions, Use Hierarchy, Restrictions, Attribute Parameter Values, and Impedance). The default values of the custom travel mode parameters model travelling by car. You may want to choose Custom and set the custom travel mode parameters listed above to model a pedestrian with a fast walking speed or a truck with a given height, weight, and cargo of certain hazardous materials. You may choose to do this to try out different settings to get desired analysis results. Once you have identified the analysis settings, you should work with your organization's administrator and save these settings as part of new or existing travel mode so that everyone in your organization can rerun the analysis with the same settings. |
Time_Units (Optional) |
Specify the units that should be used to measure and report the total travel time between each origin-destination pair. The choices include the following:
|
Distance_Units (Optional) |
Specify the units that should be used to measure and report the total travel distance between each origin-destination pair. The choices include the following:
|
Analysis_Region (Optional) |
Specify the region in which to perform the analysis. If a value is not specified for this parameter, the tool will automatically calculate the region name based on the location of the input points. Setting the name of the region is recommended to speed up the tool execution. To specify a region, use one of the following values:
|
Number_of_Destinations_to_Find (Optional) |
Specify the maximum number of destinations to find per origin. If a value for this parameter is not specified, the output matrix includes travel costs from each origin to every destination. Individual origins can have their own values (specified as the TargetDestinationCount field) that override the Number of Destinations to Find parameter value. |
Cutoff (Optional) |
Specify the travel time or travel distance value at which to stop searching for destinations from a given origin. Any destination beyond the cutoff value will not be considered. Individual origins can have their own values (specified as the Cutoff field) that override the Cutoff parameter value. The value needs to be in the units specified by the Time Units parameter if the impedance attribute of your travel mode is time based or in the units specified by the Distance Units parameter if the impedance attribute of your travel mode is distance based. If a value is not specified, the tool will not enforce any travel time or travel distance limit when searching for destinations. |
Time_of_Day (Optional) |
Specifies the time and date at which the routes should begin. If you are modeling the driving travel mode and specify the current date and time as the value for this parameter, the tool will use live traffic conditions to find the best routes and the total travel time will be based on traffic conditions. Specifying a time of day results in more accurate routes and estimations of travel times because the travel times account for the traffic conditions that are applicable for that date and time. The Time Zone for Time of Day parameter specifies whether this time and date refer to UTC or the time zone in which the stop is located. The tool ignores this parameter when Measurement Units isn't set to a time-based unit. |
Time_Zone_for_Time_of_Day (Optional) |
Specifies the time zone of the Time of Day parameter.
|
Point_Barriers (Optional) |
Specify one or more points to act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets. For example, a point barrier can be used to represent a fallen tree along a street or time delay spent at a railroad crossing. The tool imposes a limit of 250 points that can be added as barriers. When specifying the point barriers, you can set properties for each one, such as its name or barrier type, by using attributes. The point barriers can be specified with the following attributes: Name: The name of the barrier. BarrierType: Specifies whether the point barrier restricts travel completely or adds time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):
Additional_Time: Indicates how much travel time is added when the barrier is traversed. This field is applicable only for added-cost barriers and only if the measurement units are time based. This field value must be greater than or equal to zero, and its units are the same as those specified in the Measurement Units parameter. Additional_Distance: Indicates how much distance is added when the barrier is traversed. This field is applicable only for added-cost barriers and only if the measurement units are distance based. The field value must be greater than or equal to zero, and its units are the same as those specified in the Measurement Units parameter. |
Line_Barriers (Optional) |
Specify one or more lines that prohibit travel anywhere the lines intersect the streets. For example, a parade or protest that blocks traffic across several street segments can be modeled with a line barrier. A line barrier can also quickly fence off several roads from being traversed, thereby channeling possible routes away from undesirable parts of the street network. The tool imposes a limit on the number of streets you can restrict using the Line Barriers parameter. While there is no limit on the number of lines you can specify as line barriers, the combined number of streets intersected by all the lines cannot exceed 500. When specifying the line barriers, you can set a name property for each one by using the following attribute: Name: The name of the barrier. |
Polygon_Barriers (Optional) |
Specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons. The service imposes a limit on the number of streets you can restrict using the Polygon Barriers parameter. While there is no limit on the number of polygons you can specify as the polygon barriers, the combined number of streets intersected by all the polygons should not exceed 2,000. When specifying the polygon barriers, you can set properties for each one, such as its name or barrier type, by using attributes. The polygon barriers can be specified with the following attributes: Name: The name of the barrier. BarrierType: Specifies whether the barrier restricts travel completely or scales the time or distance for traveling through it. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):
ScaledTimeFactor: This is the factor by which the travel time of the streets intersected by the barrier is multiplied. This field is applicable only for scaled-cost barriers and only if the measurement units are time based. The field value must be greater than zero. ScaledDistanceFactor: This is the factor by which the distance of the streets intersected by the barrier is multiplied. This attribute is applicable only for scaled-cost barriers and only if the measurement units are distance based. The attribute value must be greater than zero. |
UTurn_at_Junctions (Optional) |
The U-Turn policy at junctions. Allowing U-turns implies the solver can turn around at a junction and double back on the same street. Given that junctions represent street intersections and dead ends, different vehicles may be able to turn around at some junctions but not at others—it depends on whether the junction represents an intersection or dead end. To accommodate, the U-turn policy parameter is implicitly specified by how many edges, or streets, connect to the junction, which is known as junction valency. The acceptable values for this parameter are listed below; each is followed by a description of its meaning in terms of junction valency.
This parameter is ignored unless Travel Mode is set to Custom. |
Use_Hierarchy (Optional) |
Specify whether hierarchy should be used when finding the shortest paths between stops.
The tool automatically reverts to using hierarchy if the straight-line distance between facilities and demand points is greater than 50 miles (80.46 kilometers), even if you have set this parameter to not use hierarchy. This parameter is ignored unless Travel Mode is set to Custom. When modeling a custom walking mode, it is recommended to turn off hierarchy since the hierarchy is designed for motorized vehicles. |
Restrictions (Optional) |
Specify which restrictions should be honored by the tool when finding the best routes. A restriction represents a driving preference or requirement. In most cases, restrictions cause roads to be prohibited, but they can also cause them to be avoided or preferred. For instance, using an Avoid Toll Roads restriction will result in a route that will include toll roads only when it is absolutely required to travel on toll roads in order to visit a stop. Height Restriction makes it possible to route around any clearances that are lower than the height of your vehicle. If you are carrying corrosive materials on your vehicle, using the Any Hazmat Prohibited restriction prevents hauling the materials along roads where it is marked as illegal to do so. The values you provide for this parameter are ignored unless Travel Mode is set to Custom. Below is a list of available restrictions and a short description.
Some restrictions require an additional value to be specified for their desired use. This value needs to be associated with the restriction name and a specific parameter intended to work with the restriction. You can identify such restrictions if their names appear under the AttributeName column in the Attribute Parameter Values parameter. The ParameterValue field should be specified in the Attribute Parameter Values parameter for the restriction to be correctly used when finding traversable roads.
Some restrictions are supported only in certain countries; their availability is stated by region in the list below. Of the restrictions that have limited availability within a region, you can check whether the restriction is available in a particular country by looking at the table in the Country List section of the Data coverage for network analysis services web page. If a country has a value of Yes in the Logistics Attribute column, the restriction with select availability in the region is supported in that country. If you specify restriction names that are not available in the country where your incidents are located, the service ignores the invalid restrictions. The service also ignores restrictions whose Restriction Usage parameter value is between 0 and 1 (see the Attribute Parameter Value parameter). It prohibits all restrictions whose Restriction Usage parameter value is greater than 0. The tool supports the following restrictions:
The Driving a Delivery Vehicle restriction attribute is deprecated and will be unavailable in future releases. To achieve similar results, use the Driving a Truck restriction attribute along with the Avoid Truck Restricted Roads restriction attribute. |
Attribute_Parameter_Values (Optional) |
Specify additional values required by some restrictions, such as the weight of a vehicle for Weight Restriction. You can also use the attribute parameter to specify whether any restriction prohibits, avoids, or prefers travel on roads that use the restriction. If the restriction is meant to avoid or prefer roads, you can further specify the degree to which they are avoided or preferred using this parameter. For example, you can choose to never use toll roads, avoid them as much as possible, or even highly prefer them. The values you provide for this parameter are ignored unless Travel Mode is set to Custom. If you specify the Attribute Parameter Values parameter from a feature class, the field names on the feature class must match the fields as described below: AttributeName: Lists the name of the restriction. ParameterName: Lists the name of the parameter associated with the restriction. A restriction can have one or more ParameterName field values based on its intended use. ParameterValue: The value for ParameterName used by the tool when evaluating the restriction. Attribute Parameter Values is dependent on the Restrictions parameter. The ParameterValue field is applicable only if the restriction name is specified as the value for the Restrictions parameter. In Attribute Parameter Values, each restriction (listed as AttributeName) has a ParameterName field value, Restriction Usage, that specifies whether the restriction prohibits, avoids, or prefers travel on the roads associated with the restriction and the degree to which the roads are avoided or preferred. The Restriction Usage ParameterName can be assigned any of the following string values or their equivalent numeric values listed within the parentheses:
In most cases, you can use the default value, PROHIBITED, for the Restriction Usage if the restriction is dependent on a vehicle-characteristic such as vehicle height. However, in some cases, the value for Restriction Usage depends on your routing preferences. For example, the Avoid Toll Roads restriction has the default value of AVOID_MEDIUM for the Restriction Usage parameter. This means that when the restriction is used, the tool will try to route around toll roads when it can. AVOID_MEDIUM also indicates how important it is to avoid toll roads when finding the best route; it has a medium priority. Choosing AVOID_LOW would put lower importance on avoiding tolls; choosing AVOID_HIGH instead would give it a higher importance and thus make it more acceptable for the service to generate longer routes to avoid tolls. Choosing PROHIBITED would entirely disallow travel on toll roads, making it impossible for a route to travel on any portion of a toll road. Keep in mind that avoiding or prohibiting toll roads, and thus avoiding toll payments, is the objective for some; in contrast, others prefer to drive on toll roads because avoiding traffic is more valuable to them than the money spent on tolls. In the latter case, you would choose PREFER_LOW, PREFER_MEDIUM, or PREFER_HIGH as the value for Restriction Usage. The higher the preference, the farther the tool will go out of its way to travel on the roads associated with the restriction. |
Impedance (Optional) |
Specify the impedance, which is a value that represents the effort or cost of traveling along road segments or on other parts of the transportation network. Travel distance is an impedance; the length of a road in kilometers can be thought of as impedance. Travel distance in this sense is the same for all modes—a kilometer for a pedestrian is also a kilometer for a car. (What may change is the pathways on which the different modes are allowed to travel, which affects distance between points, and this is modeled by travel mode settings.) Travel time can also be an impedance; a car may take one minute to travel a mile along an empty road. Travel times can vary by travel mode—a pedestrian may take more than 20 minutes to walk the same mile, so it is important to choose the right impedance for the travel mode you are modeling. Choose from the following impedance values:
The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. If you choose Drive Time, Truck Time, or Walk Time, the Measurement Units parameter must be set to a time-based value; if you choose Travel Distance for Impedance, Measurement Units must be distance-based. |
Origin_Destination_Line_Shape (Optional) |
The resulting lines of an OD cost matrix can be represented with either straight-line geometry or no geometry at all. In both cases, the route is always computed along the street network by minimizing the travel time or the travel distance, never using the straight-line distance between origins and destinations.
|
Save_Output_Network_Analysis_Layer (Optional) |
Specify if the tool should save the analysis settings as a network analysis layer file. You cannot directly work with this file even when you open the file in an ArcGIS Desktop application like ArcMap. It is meant to be sent to Esri Technical Support to diagnose the quality of results returned from the tool.
|
Overrides (Optional) |
Specify additional settings that can influence the behavior of the solver when finding solutions for the network analysis problems. The value for this parameter needs to be specified in JavaScript Object Notation (JSON). For example, a valid value is of the following form {"overrideSetting1" : "value1", "overrideSetting2" : "value2"}. The override setting name is always enclosed in double quotes. The values can be either a number, Boolean, or a string. The default value for this parameter is no value, which indicates not to override any solver settings. Overrides are advanced settings that should be used only after careful analysis of the results obtained before and after applying the settings. A list of supported override settings for each solver and their acceptable values can be obtained by contacting Esri Technical Support. |
GenerateOriginDestinationCostMatrix example
The following Python script demonstrates how to use the GenerateOriginDestinationCostMatrix tool in a script.
import arcpy import time import datetime import sys username = "<your user name>" password = "<your password>" od_service = "http://logistics.arcgis.com/arcgis/services;World/OriginDestinationCostMatrix;{0};{1}".format(username, password) #Add the geoprocessing service as a toolbox. Use an alias when importing arcpy.ImportToolbox(od_service, "agol") #Set the variables to call the tool origins = r'C:/data/Inputs.gdb/Origins' destinations = r'C:/data/Inputs.gdb/Destinations' output_od_lines = r'C:/data/Results.gdb/ODLines' output_origins = r'C:/data/Results.gdb/OutputOrigins' output_destinations = r'C:/data/Results.gdb/OutputDestinations' #Call the tool result = arcpy.agol.GenerateOriginDestinationCostMatrix(origins, destinations, "Driving Time", Origin_Destination_Line_Shape="Straight Line") #Check the status of the result object every 0.5 seconds #until it has a value of 4(succeeded) or greater while result.status < 4: time.sleep(0.5) #print any warning or error messages returned from the tool result_severity = result.maxSeverity if result_severity == 2: print "An error occured when running the tool" print result.getMessages(2) sys.exit(2) elif result_severity == 1: print "Warnings were returned when running the tool" print result.getMessages(1) #Get the output routes and save to a local geodatabase result.getOutput(1).save(output_od_lines) result.getOutput(2).save(output_origins) result.getOutput(3).save(output_destinations)
matrix, distance matrix, travel matrix, od matrix, od cost matrix, origin-destination, origin destination cost matrix, origin destination matrix
Esri and its data vendors.
This tool is available for users with an ArcGIS Online organizational subscription. To access this geoprocessing tool, you'll need to sign in with an account that is a member of an organizational subscription. Each successful tool execution incurs service credits which are debited from your subscription.