{ "name": "SolveVehicleRoutingProblem", "displayName": "SolveVehicleRoutingProblem", "description": "SolveVehicleRoutingProblem tool solves a vehicle routing problem (VRP) to find the best routes for a fleet of vehicles. A dispatcher managing a fleet of vehicles is often required to make decisions about vehicle routing. One such decision involves how to best assign a group of customers to a fleet of vehicles and to sequence and schedule their visits. The objectives in solving such vehicle routing problems (VRP) are to provide a high level of customer service by honoring any time windows while keeping the overall operating and investment costs for each route as low as possible. The constraints are to complete the routes with available resources and within the time limits imposed by driver work shifts, driving speeds, and customer commitments., This service can be used to determine solutions for such complex fleet management tasks. Consider an example of delivering goods to grocery stores from a central warehouse location. A fleet of three trucks is available at the warehouse. The warehouse operates only within a certain time window\u2014from 8:00 a.m. to 5:00 p.m.\u2014during which all trucks must return back to the warehouse. Each truck has a capacity of 15,000 pounds, which limits the amount of goods it can carry. Each store has a demand for a specific amount of goods (in pounds) that needs to be delivered, and each store has time windows that confine when deliveries should be made. Furthermore, the driver can work only eight hours per day, requires a break for lunch, and is paid for the time spent on driving and servicing the stores. The goal is to come up with an itinerary for each driver (or route) such that the deliveries can be made while honoring all the service requirements and minimizing the total time spent on a particular route by the driver.", "category": "", "helpUrl": "https://sampleserver6.arcgisonline.com/arcgis/rest/directories/arcgisoutput/NetworkAnalysis/SanDiego_GPServer/NetworkAnalysis_SanDiego/SolveVehicleRoutingProblem.htm", "executionType": "esriExecutionTypeAsynchronous", "parameters": [ { "name": "orders", "dataType": "GPFeatureRecordSetLayer", "displayName": "Orders", "description": "Specify one or more orders (up to 2,000). These are the locations that the routes of the VRP analysis\nshould visit. An order can represent a delivery (for example,\nfurniture delivery), a pickup (such as an airport shuttle bus\npicking up a passenger), or some type of service or inspection (a\ntree trimming job or building inspection for\ninstance). When specifying the orders, you can set properties for each one, such as its name or service time, by using attributes. The orders can be specified with the following attributes: \n ObjectID: The system-managed ID field. \n Name: The name of the order. The name must be unique. If the\nname is left null, a name is automatically generated at solve\ntime. \n ServiceTime: This property specifies how much time will be spent at the\nnetwork location when the route visits it; that is, it stores the\nimpedance value for the network location. A zero or null value\nindicates the network location requires no service time. The unit for this field value is specified by the time_units parameter. \n TimeWindowStart1: The beginning time of the first time window for the\nnetwork location. This field can contain a null value; a null value\nindicates no beginning time. A time window only states when a vehicle can arrive\nat an order; it doesn't state when the service time must be\ncompleted. To account for service time and leave before the time\nwindow is over, subtract ServiceTime from the TimeWindowEnd1\nfield. The time window fields can contain a time-only value or a\ndate and time value. If a time field such as TimeWindowStart1 has a\ntime-only value (for example, 8:00 AM), the date is assumed to be\nthe date specified by the Default Date parameter. Using date and\ntime values (for example, 7/11/2010 8:00 AM) allows you to set time\nwindows that span multiple days. When solving a problem that spans multiple time zones, each order's time-window values refer to the time zone in which the order is located. \n TimeWindowEnd1: The ending time of the first window for the network\nlocation. This field can contain a null value; a null value\nindicates no ending time. \n TimeWindowStart2: The beginning time of the second time window for the\nnetwork location. This field can contain a null value; a null value\nindicates that there is no second time window. If the first time window is null, as specified by\nthe TimeWindowStart1 and TimeWindowEnd1 fields, the second time\nwindow must also be null. If both time windows are nonnull, they can't\noverlap. Also, the second time window must occur after the\nfirst. \n TimeWindowEnd2: The ending time of the second time window for the\nnetwork location. This field can contain a null\nvalue. When TimeWindowStart2 and TimeWindowEnd2 are both\nnull, there is no second time window. When TimeWindowStart2 is not null but TimeWindowEnd2\nis null, there is a second time window that has a starting time but\nno ending time. This is valid. \n MaxViolationTime1: A time window is considered violated if the arrival\ntime occurs after the time window has ended. This field specifies\nthe maximum allowable violation time for the first time window of\nthe order. It can contain a zero value but can't contain negative\nvalues. A zero value indicates that a time window violation at the\nfirst time window of the order is unacceptable; that is, the first\ntime window is hard. On the other hand, a null value indicates that\nthere is no limit on the allowable violation time. A nonzero value\nspecifies the maximum amount of lateness; for example, a route can\narrive at an order up to 30 minutes beyond the end of its first\ntime window. The unit for this field value is specified by the Time\nField Units parameter Time window violations can be tracked and weighted by the\nsolver. Because of this, you can direct the VRP solver to take one\nof three approaches: Minimize the overall violation time, regardless of the\nincrease in travel cost for the fleet. Find a solution that balances overall violation time and\ntravel cost. Ignore the overall violation time; instead, minimize\nthe travel cost for the fleet. By assigning an importance level for the Time Window\nViolation Importance parameter, you are essentially choosing one of\nthese three approaches. In any case, however, the solver will\nreturn an error if the value set for MaxViolationTime1 is\nsurpassed. \n MaxViolationTime2: The maximum allowable violation time for the second\ntime window of the order. This field is analogous to the\nMaxViolationTime1 field. \n InboundArriveTime: Defines when the item to be delivered to the order will be ready at the starting depot. The order can be assigned to a route only if the inbound arrive time precedes the route's latest start time value; this way, the route cannot leave the depot before the item is ready to be loaded onto it. This field can help model scenarios involving inbound-wave transshipments. For example, a job at an order requires special materials that are not currently available at the depot. The materials are being shipped from another location and will arrive at the depot at 11:00 a.m. To ensure a route that leaves before the shipment arrives isn't assigned to the order, the order's inbound arrive time is set to 11:00 a.m. The special materials arrive at 11:00 a.m., they are loaded onto the vehicle, and the vehicle departs from the depot to visit its assigned orders. Notes:The route's start time, which includes service times, must occur after the inbound arrive time. If a route begins before an order's inbound arrive time, the order cannot be assigned to the route. The assignment is invalid even if the route has a start-depot service time that lasts until after the inbound arrive time.This time field can contain a time-only value or a date and\ntime value. If a\ntime-only value is set (for example, 11:00 AM), the date is assumed to be\nthe date specified by the Default Date parameter. The default date is ignored, however, when any time field in the Depots, Routes, Orders, or Breaks includes a date with the time. In that case, specify all such fields with a date and time (for example, 7/11/2015 11:00 AM).The VRP solver honors InboundArriveTime regardless of the DeliveryQuantities value.If an outbound depart time is also specified, its time value must occur after the inbound arrive time. \n OutboundDepartTime: Defines when the item to be picked up at the order must arrive at the ending depot. The order can be assigned to a route only if the route can visit the order and reach its end depot before the specified outbound depart time. This field can help model scenarios involving outbound-wave transshipments. For instance, a shipping company sends out delivery trucks to pick up packages from orders and bring them into a depot where they are forwarded on to other facilities, en route to their final destination. At 3:00 p.m. every day, a semitrailer stops at the depot to pick up the high-priority packages and take them directly to a central processing station. To avoid delaying the high-priority packages until the next day's 3:00 p.m. trip, the shipping company tries to have delivery trucks pick up the high-priority packages from orders and bring them to the depot before the 3:00 p.m. deadline. This is done by setting the outbound depart time to 3:00 p.m. Notes:The route's end time, including service times, must occur before the outbound depart time. If a route reaches a depot but doesn't complete its end-depot service time prior to the order's outbound depart time, the order cannot be assigned to the route. This time field can contain a time-only value or a date and\ntime value. If a\ntime-only value is set (for example, 11:00 AM), the date is assumed to be\nthe date specified by the Default Date parameter. The default date is ignored, however, when any time field in Depots, Routes, Orders, or Breaks includes a date with the time. In that case, specify all such fields with a date and time (for example, 7/11/2015 11:00 AM).The VRP solver honors OutboundDepartTime regardless of the PickupQuantities value.If an inbound arrive time is also specified, its time value must occur before the outbound depart time. \n DeliveryQuantities: The size of the delivery. You can specify size in\nany dimension you want, such as weight, volume, or quantity. You\ncan even specify multiple dimensions, for example, weight and\nvolume. Enter delivery quantities without indicating units.\nFor example, if a 300-pound object needs to be delivered to an\norder, enter 300. You will need to remember that the value is in\npounds. If you are tracking multiple dimensions, separate\nthe numeric values with a space. For instance, if you are recording\nthe weight and volume of a delivery that weighs 2,000 pounds and\nhas a volume of 100 cubic feet, enter 2000 100. Again, you need to\nremember the units\u2014in this case, pounds and cubic feet. You also\nneed to remember the sequence in which the values and their corresponding\nunits are entered. Make sure that Capacities for Routes and\nDeliveryQuantities and PickupQuantities for Orders are specified in\nthe same manner; that is, the values need to be in the same units,\nand if you are using multiple dimensions, the dimensions need to be\nlisted in the same sequence for all parameters. So if you specify\nweight in pounds, followed by volume in cubic feet for\nDeliveryQuantities, the capacity of your routes and the pickup\nquantities of your orders need to be specified the same way: weight in\npounds, then volume in cubic feet. If you mix units or change the\nsequence, you will get unwanted results without receiving any\nwarning messages. An empty string or null value is equivalent to all\ndimensions being zero. If the string has an insufficient number of\nvalues in relation to the capacity count, or dimensions being\ntracked, the remaining values are treated as zeros. Delivery\nquantities can't be negative. \n PickupQuantities: The size of the pickup. You can specify size in any\ndimension you want, such as weight, volume, or quantity. You can\neven specify multiple dimensions, for example, weight and volume.\nYou cannot, however, use negative values. This field is analogous\nto the DeliveryQuantities field of Orders. In the case of an exchange visit, an order can have\nboth delivery and pickup quantities. \n Revenue: The income generated if the order is included in a\nsolution. This field can contain a null value\u2014a null value\nindicates zero revenue\u2014but it can't have a negative\nvalue. Revenue is included in optimizing the objective\nfunction value but is not part of the solution's operating cost;\nthat is, the TotalCost field in the route class never includes\nrevenue in its output. However, revenue weights the relative\nimportance of servicing orders. \n SpecialtyNames: A space-separated string containing the names of the\nspecialties required by the order. A null value indicates that the\norder doesn't require specialties. The spelling of any specialties listed in the Orders\nand Routes classes must match exactly so that the VRP solver can\nlink them together. To illustrate what specialties are and how they\nwork, assume a lawn care and tree trimming company has a portion of\nits orders that requires a bucket truck to trim tall trees. The\ncompany would enter BucketTruck in the SpecialtyNames field for\nthese orders to indicate their special need. SpecialtyNames would\nbe left as null for the other orders. Similarly, the company would\nalso enter BucketTruck in the SpecialtyNames field of routes that\nare driven by trucks with hydraulic booms. It would leave the field\nnull for the other routes. At solve time, the VRP solver assigns\norders without special needs to any route, but it only assigns\norders that need bucket trucks to routes that have\nthem. \n AssignmentRule: This field specifies the rule for assigning the order to a\nroute. It is constrained by a domain of values, which are listed\nbelow (use the numeric code, not the name in parentheses). 0 (Exclude)\u2014The order is to be excluded from the\nsubsequent solve operation.1 (Preserve route and relative sequence)\u2014The solver must\nalways assign the order to the preassigned route and at the\npreassigned relative sequence during the solve operation. If this\nassignment rule can't be followed, it results in an order\nviolation. With this setting, only the relative sequence is\nmaintained, not the absolute sequence. To illustrate what this\nmeans, imagine there are two orders: A and B. They have sequence\nvalues of 2 and 3, respectively. If you set their AssignmentRule\nfield values to Preserve route and relative sequence, A and B's\nactual sequence values may change after solving because other\norders, breaks, and depot visits could still be sequenced before,\nbetween, or after A and B. However, B cannot be sequenced before\nA. 2 (Preserve route)\u2014The solver must always assign the\norder to the preassigned route during the solve operation. A valid\nsequence must also be set even though the sequence may or may not\nbe preserved. If the order can't be assigned to the specified\nroute, it results in an order violation. 3 (Override)\u2014The solver tries to preserve the route\nand sequence preassignment for the order during the solve\noperation. However, a new route or sequence for the order may\nbe assigned if it helps minimize the overall value of the objective\nfunction. This is the default value.4 (Anchor first)\u2014The solver ignores the route and sequence preassignment (if any) for the order during the solve operation. It assigns a route to the order, and makes it the first order on that route, so as to minimize the overall value of the objective function.5 (Anchor last)\u2014The solver ignores the route and sequence preassignment (if any) for the order during the solve operation. It assigns a route to the order, and makes it the last order on that route, so as to minimize the overall value of the objective function. This field can't contain a null\nvalue. \n CurbApproach: Specifies the direction a vehicle may arrive at and depart\nfrom the order. The field value is specified as one of the\nfollowing integers shown in the parentheses (use the numeric code, not the name in parentheses): 0 (Either side of vehicle)\u2014The vehicle can approach and depart the order in either direction, so a U-turn is allowed at the incident. This setting can be chosen if it is possible and desirable for your vehicle to turn around at the order. This decision may depend on the width of the road and the amount of traffic or whether the order has a parking lot where vehicles can pull in and turn around. 1 (Right side of vehicle)\u2014When the vehicle approaches and departs the order, the order must be on the right side of the vehicle. A U-turn is prohibited. This is typically used for vehicles like buses that must arrive with the bus stop on the right-hand side. 2 (Left side of vehicle)\u2014When the vehicle approaches and departs\nthe order, the curb must be on the left side of the vehicle. A\nU-turn is prohibited. This is typically used for vehicles like buses that must arrive with the bus stop on the left-hand side. 3 (No U-Turn)\u2014When\nthe vehicle approaches the order, the curb can be on either side\nof the vehicle; however, the vehicle must depart without turning\naround. The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an order on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach an order from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at an order and not have a lane of traffic between the vehicle and the order, you would choose 1 (Right side of vehicle) in the United States but 2 (Left side of vehicle) in the United Kingdom. \n RouteName: The name of the route to which the order is\nassigned. As an input field, this field is used to preassign\nan order to a specific route. (A maximum of 200 orders can be preassigned to one route name.) It can contain a null value,\nindicating that the order is not preassigned to any route, and the\nsolver determines the best possible route assignment for the order.\nIf this is set to null, the sequence field must also be set to\nnull. After a solve operation, if the order is routed, the\nRouteName field contains the name of the route to which the order is\nassigned. \n Sequence: This indicates the sequence of the order on its\nassigned route. As an input field, this field is used to specify the\nrelative sequence for an order on the route. This field can contain\na null value specifying that the order can be placed anywhere along\nthe route. A null value can only occur together with a null\nRouteName value. The input sequence values are positive and unique\nfor each route (shared across renewal depot visits, orders, and\nbreaks) but do not need to start from 1 or be\ncontiguous. After a solve operation, the Sequence field contains\nthe sequence value of the order on its assigned route. Output\nsequence values for a route are shared across depot visits, orders,\nand breaks; start from 1 (at the starting depot); and are\nconsecutive. So the smallest possible output sequence value for a\nrouted order is 2, since a route always begins at a\ndepot", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "geometryType": "esriGeometryPoint", "spatialReference": { "wkid": 4326, "latestWkid": 4326 }, "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "OBJECTID" }, { "name": "Name", "type": "esriFieldTypeString", "alias": "Name", "length": 500 }, { "name": "ServiceTime", "type": "esriFieldTypeDouble", "alias": "ServiceTime" }, { "name": "TimeWindowStart1", "type": "esriFieldTypeDate", "alias": "TimeWindowStart1", "length": 8 }, { "name": "TimeWindowEnd1", "type": "esriFieldTypeDate", "alias": "TimeWindowEnd1", "length": 8 }, { "name": "TimeWindowStart2", "type": "esriFieldTypeDate", "alias": "TimeWindowStart2", "length": 8 }, { "name": "TimeWindowEnd2", "type": "esriFieldTypeDate", "alias": "TimeWindowEnd2", "length": 8 }, { "name": "MaxViolationTime1", "type": "esriFieldTypeDouble", "alias": "MaxViolationTime1" }, { "name": "MaxViolationTime2", "type": "esriFieldTypeDouble", "alias": "MaxViolationTime2" }, { "name": "InboundArriveTime", "type": "esriFieldTypeDate", "alias": "InboundArriveTime", "length": 8 }, { "name": "OutboundDepartTime", "type": "esriFieldTypeDate", "alias": "OutboundDepartTime", "length": 8 }, { "name": "DeliveryQuantities", "type": "esriFieldTypeString", "alias": "DeliveryQuantities", "length": 128 }, { "name": "PickupQuantities", "type": "esriFieldTypeString", "alias": "PickupQuantities", "length": 128 }, { "name": "Revenue", "type": "esriFieldTypeDouble", "alias": "Revenue" }, { "name": "SpecialtyNames", "type": "esriFieldTypeString", "alias": "SpecialtyNames", "length": 500 }, { "name": "AssignmentRule", "type": "esriFieldTypeInteger", "alias": "AssignmentRule" }, { "name": "RouteName", "type": "esriFieldTypeString", "alias": "RouteName", "length": 1024 }, { "name": "Sequence", "type": "esriFieldTypeInteger", "alias": "Sequence" }, { "name": "CurbApproach", "type": "esriFieldTypeInteger", "alias": "CurbApproach" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeRequired", "category": "" }, { "name": "depots", "dataType": "GPFeatureRecordSetLayer", "displayName": "Depots", "description": "Specify one or more depots for the given vehicle routing problem. A depot\nis a location that a vehicle departs from at the beginning of its\nworkday and returns to at the end of the workday. Vehicles are\nloaded (for deliveries) or unloaded (for pickups) at depots at the\nstart of the route. In some cases, a depot can also act as a\nrenewal location whereby the vehicle can unload or reload and\ncontinue performing deliveries and pickups. A depot has open and\nclose times, as specified by a hard time window. Vehicles can't\narrive at a depot outside of this time window. When specifying the orders, you can set properties for each one, such as its name or service time, by using attributes. The orders can be specified with the following attributes: \n ObjectID: The system-managed ID field. \n Name: The name of the depot. The StartDepotName and EndDepotName\nfields of the Routes record set reference the names you specify\nhere. It is also referenced by the Route Renewals record set, when\nused. Depot names are case insensitive and have to be nonempty\nand unique. \n TimeWindowStart1: The beginning time of the first time window for the\nnetwork location. This field can contain a null value; a null value\nindicates no beginning time. Time window fields can contain a time-only value or a date\nand time value. If a time field has a time-only value (for example,\n8:00 AM), the date is assumed to be the date specified by the\nDefault Date parameter of the analysis layer. Using date and time\nvalues (for example, 7/11/2010 8:00 AM) allows you to set time\nwindows that span multiple days. When solving a problem that spans multiple time zones, each depot's time-window values refer to the time zone in which the depot is located. \n TimeWindowEnd1: The ending time of the first window for the network\nlocation. This field can contain a null value; a null value\nindicates no ending time. \n TimeWindowStart2: The beginning time of the second time window for the\nnetwork location. This field can contain a null value; a null value\nindicates that there is no second time window. If the first time window is null, as specified by the\nTimeWindowStart1 and TimeWindowEnd1 fields, the second time window\nmust also be null. If both time windows are nonnull, they can't overlap.\nAlso, the second time window must occur after the first. \n TimeWindowEnd2: The ending time of the second time window for the network\nlocation. This field can contain a null value. When TimeWindowStart2 and TimeWindowEnd2 are both null,\nthere is no second time window. When TimeWindowStart2 is not null but TimeWindowEnd2 is\nnull, there is a second time window that has a starting time but no\nending time. This is valid. \n CurbApproach: Specifies the direction a vehicle may arrive at and depart\nfrom the depot. The field value is specified as one of the\nfollowing integers shown in the parentheses (use the numeric code, not the name in parentheses): 0 (Either side of vehicle)\u2014The vehicle can approach and depart the depot in either direction, so a U-turn is allowed at the incident. This setting can be chosen if it is possible and desirable for your vehicle to turn around at the depot. This decision may depend on the width of the road and the amount of traffic or whether the depot has a parking lot where vehicles can pull in and turn around. 1 (Right side of vehicle)\u2014When the vehicle approaches and departs the depot, the depot must be on the right side of the vehicle. A U-turn is prohibited. This is typically used for vehicles like buses that must arrive with the bus stop on the right-hand side. 2 (Left side of vehicle)\u2014When the vehicle approaches and departs\nthe depot, the curb must be on the left side of the vehicle. A\nU-turn is prohibited. This is typically used for vehicles like buses that must arrive with the bus stop on the left-hand side. 3 (No U-Turn)\u2014When\nthe vehicle approaches the depot, the curb can be on either side\nof the vehicle; however, the vehicle must depart without turning\naround. The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider a depot on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach a depot from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at a depot and not have a lane of traffic between the vehicle and the depot, you would choose 1 (Right side of vehicle) in the United States but 2 (Left side of vehicle) in the United Kingdom. \n Bearing: The direction in which a point is moving. The units are\ndegrees and measured in a clockwise fashion from true north.\nThis field is used in conjunction with the BearingTol\nfield. Bearing data is usually sent automatically from a mobile\ndevice equipped with a GPS receiver. Try to include bearing\ndata if you are loading an order that is moving, such as a\npedestrian or a vehicle. Using this field tends to prevent adding locations to the\nwrong edges, which can occur when a vehicle is near an intersection\nor an overpass for example. Bearing also helps the tool\ndetermine on which side of the street the point is. For more information, see the Bearing and Bearing Tolerance Help topic (http://links.esri.com/bearing-and-bearing-tolerance). \n BearingTol: The bearing tolerance value creates a range of acceptable\nbearing values when locating moving points on an edge using the\nBearing field. If the value from the Bearing field is within the\nrange of acceptable values that are generated from the bearing\ntolerance on an edge, the point can be added as a network location\nthere; otherwise, the closest point on the next-nearest edge is\nevaluated. The units are in degrees and the default value is 30.\nValues must be greater than zero and less than 180. A value of 30 means that when Network Analyst attempts to\nadd a network location on an edge, a range of acceptable bearing\nvalues is generated 15 degrees to either side of the edge (left and\nright) and in both digitized directions of the edge. For more information, see the Bearing and Bearing Tolerance topic in the ArcGIS help system (http://links.esri.com/bearing-and-bearing-tolerance). \n NavLatency: This field is only used in the solve process if Bearing\nand BearingTol also have values; however, entering a NavLatency\nvalue is optional, even when values are present in Bearing and\nBearingTol. NavLatency indicates how much time is expected to\nelapse from the moment GPS information is sent from a moving\nvehicle to a server and the moment the processed route is received\nby the vehicle's navigation device. The time units of NavLatency\nare the same as the units of the cost attribute specified by the\nparameter Time Attribute.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "geometryType": "esriGeometryPoint", "spatialReference": { "wkid": 4326, "latestWkid": 4326 }, "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "Name", "type": "esriFieldTypeString", "alias": "Name", "length": 500 }, { "name": "TimeWindowStart1", "type": "esriFieldTypeDate", "alias": "TimeWindowStart1", "length": 8 }, { "name": "TimeWindowEnd1", "type": "esriFieldTypeDate", "alias": "TimeWindowEnd1", "length": 8 }, { "name": "TimeWindowStart2", "type": "esriFieldTypeDate", "alias": "TimeWindowStart2", "length": 8 }, { "name": "TimeWindowEnd2", "type": "esriFieldTypeDate", "alias": "TimeWindowEnd2", "length": 8 }, { "name": "CurbApproach", "type": "esriFieldTypeInteger", "alias": "CurbApproach" }, { "name": "Bearing", "type": "esriFieldTypeDouble", "alias": "Bearing" }, { "name": "BearingTol", "type": "esriFieldTypeDouble", "alias": "BearingTol" }, { "name": "NavLatency", "type": "esriFieldTypeDouble", "alias": "NavLatency" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeRequired", "category": "" }, { "name": "routes", "dataType": "GPRecordSet", "displayName": "Routes", "description": "Specify one or more routes (up to 100). A route specifies vehicle and driver\ncharacteristics; after solving, it also represents the path between\ndepots and orders. A route can have start and end depot service times, a\nfixed or flexible starting time, time-based operating costs,\ndistance-based operating costs, multiple capacities, various\nconstraints on a driver's workday, and so on. When specifying the routes, you can set properties for each one by using attributes. The routes can be specified with the following attributes: \n Name: The name of the route. The name must be\nunique. The tool generates a unique name at solve time if\nthe field value is null; therefore, entering a value is optional in\nmost cases. However, you must enter a name if your analysis\nincludes breaks, route renewals, route zones, or orders that are\npreassigned to a route because the route name is used as a foreign\nkey in these cases. Note that route names are case\ninsensitive. \n StartDepotName: The name of the starting depot for the route. This field\nis a foreign key to the Name field in Depots. If the StartDepotName value is null, the route will begin\nfrom the first order assigned. Omitting the start depot is useful\nwhen the vehicle's starting location is unknown or irrelevant to\nyour problem. However, when StartDepotName is null, EndDepotName\ncannot also be null. Virtual start depots are not allowed if orders or depots are in\nmultiple time zones. If the route is making deliveries and StartDepotName is\nnull, it is assumed the cargo is loaded on the vehicle at a virtual\ndepot before the route begins. For a route that has no renewal\nvisits, its delivery orders (those with nonzero DeliveryQuantities\nvalues in the Orders class) are loaded at the start depot or\nvirtual depot. For a route that has renewal visits, only the\ndelivery orders before the first renewal visit are loaded at the\nstart depot or virtual depot. \n EndDepotName: The name of the ending depot for the route. This field is\na foreign key to the Name field in the Depots class. \n StartDepotServiceTime: The service time at the starting depot. This can be used\nto model the time spent loading the vehicle. This field can\ncontain a null value; a null value indicates zero service\ntime. The unit for this field value is specified by the Time\nField Units parameter. The service times at the start and end depots are fixed\nvalues (given by the StartDepotServiceTime and EndDepotServiceTime\nfield values) and do not take into account the actual load for a\nroute. For example, the time taken to load a vehicle at the\nstarting depot may depend on the size of the orders. As such, the\ndepot service times could be given values corresponding to a full\ntruckload or an average truckload, or you could make your own time\nestimate. \n EndDepotServiceTime: The service time at the ending depot. This can be used to\nmodel the time spent unloading the vehicle. This field can\ncontain a null value; a null value indicates zero service\ntime. The unit for this field value is specified by the Time\nField Units parameter. The service times at the start and end depots are fixed\nvalues (given by the StartDepotServiceTime and EndDepotServiceTime\nfield values) and do not take into account the actual load for a\nroute. For example, the time taken to load a vehicle at the\nstarting depot may depend on the size of the orders. As such, the\ndepot service times could be given values corresponding to a full\ntruckload or an average truckload, or you could make your own time\nestimate. \n EarliestStartTime: The earliest allowable starting time for the route. This\nis used by the solver in conjunction with the time window of the\nstarting depot for determining feasible route start\ntimes. This field can't contain null values and has a default\ntime-only value of 8:00 AM; the default value is interpreted as\n8:00 a.m. on the date given by the Default Date\nparameter. When solving a problem that spans multiple time zones, the\ntime zone for EarliestStartTime is the same as the time zone in which the starting depot is located. \n LatestStartTime: The latest allowable starting time for the route. This\nfield can't contain null values and has a default time-only value\nof 10:00 AM; the default value is interpreted as 10:00 a.m. on the\ndate given by the Default Date property of the analysis\nlayer. When solving a problem that spans multiple time zones, the\ntime zone for LatestStartTime is the same as the time zone in which the starting depot is located. \n ArriveDepartDelay: This field stores the amount of travel time needed to\naccelerate the vehicle to normal travel speeds, decelerate it to a\nstop, and move it off and on the network (for example, in and out\nof parking). By including an ArriveDepartDelay value, the VRP\nsolver is deterred from sending many routes to service physically\ncoincident orders. The cost for this property is incurred between visits to\nnoncoincident orders, depots, and route renewals. For example, when\na route starts from a depot and visits the first order, the total\narrive/depart delay is added to the travel time. The same is true\nwhen traveling from the first order to the second order. If the\nsecond and third orders are coincident, the ArriveDepartDelay value\nis not added between them since the vehicle doesn't need to move.\nIf the route travels to a route renewal, the value is added to the\ntravel time again. Although a vehicle needs to slow down and stop for a break\nand accelerate afterwards, the VRP solver cannot add the\nArriveDepartDelay value for breaks. This means that if a route\nleaves an order, stops for a break, and continues to the next\norder, the arrive/depart delay is added only once, not\ntwice. To illustrate, assume there are five coincident orders in\na high-rise building, and they are serviced by three different\nroutes. This means three arrive/depart delays would be incurred;\nthat is, three drivers would need to separately find parking places\nand enter the same building. However, if the orders could be\nserviced by just one route instead, only one driver would need to\npark and enter the building\u2014only one arrive/depart delay would be\nincurred. Since the VRP solver tries to minimize cost, it will try\nto limit the arrive/depart delays and thus choose the single-route\noption. (Note that multiple routes may need to be sent when other\nconstraints\u2014such as specialties, time windows, or\ncapacities\u2014require it.) The unit for this field value is specified by the time_units parameter. \n Capacities: The maximum capacity of the vehicle. You can specify\ncapacity in any dimension you want, such as weight, volume, or\nquantity. You can even specify multiple dimensions, for example,\nweight and volume. Enter capacities without indicating units. For example,\nassume your vehicle can carry a maximum of 40,000 pounds; you would\nenter 40000. You need to remember for future reference that the\nvalue is in pounds. If you are tracking multiple dimensions, separate the\nnumeric values with a space. For instance, if you are recording\nboth weight and volume and your vehicle can carry a maximum weight\nof 40,000 pounds and a maximum volume of 2,000 cubic feet,\nCapacities should be entered as 40000 2000. Again, you need to\nremember the units. You also need to remember the sequence in which the\nvalues and their corresponding units are entered (pounds\nfollowed by cubic feet in this case). Remembering the units and the unit sequence is important\nfor a couple of reasons: one, so you can reinterpret the\ninformation later; two, so you can properly enter values for the\nDeliveryQuantities and PickupQuantities fields for the orders. To\nelaborate on the second point, note that the VRP solver\nsimultaneously refers to Capacities, DeliveryQuantities, and\nPickupQuantities to make sure that a route doesn't become\noverloaded. Since units can't be entered in the field, the VRP tool can't make unit conversions, so you need to enter the\nvalues for the three fields using the same units and the same unit\nsequence to ensure the values are correctly interpreted. If you mix\nunits or change the sequence in any of the three fields, you will\nget unwanted results without receiving any warning messages. Thus,\nit is a good idea to set up a unit and unit-sequence standard\nbeforehand and continually refer to it whenever entering values for\nthese three fields. An empty string or null value is equivalent to all values\nbeing zero. Capacity values can't be negative. If the Capacities string has an insufficient number of\nvalues in relation to the DeliveryQuantities or PickupQuantities\nfields for orders, the remaining values are treated as\nzero. The VRP solver only performs a simple Boolean test to\ndetermine whether capacities are exceeded. If a route's capacity\nvalue is greater than or equal to the total quantity being carried,\nthe VRP solver will assume the cargo fits in the vehicle. This\ncould be incorrect, depending on the actual shape of the cargo and\nthe vehicle. For example, the VRP solver allows you to fit a\n1,000-cubic-foot sphere into a 1,000-cubic-foot truck that is 8\nfeet wide. In reality, however, since the sphere is 12.6 feet in\ndiameter, it won't fit in the 8-foot wide truck. \n FixedCost: A fixed monetary cost that is incurred only if the route\nis used in a solution (that is, it has orders assigned to it). This\nfield can contain null values; a null value indicates zero fixed\ncost. This cost is part of the total route operating\ncost. \n CostPerUnitTime: The monetary cost incurred\u2014per unit of work time\u2014for the\ntotal route duration, including travel times as well as service\ntimes and wait times at orders, depots, and breaks. This field\ncan't contain a null value and has a default value of\n1.0. The unit for this field value is specified by the time_units parameter. \n CostPerUnitDistance: The monetary cost incurred\u2014per unit of distance\ntraveled\u2014for the route length (total travel distance). This field\ncan contain null values; a null value indicates zero\ncost. The unit for this field value is specified by the distance_units parameter. \n OvertimeStartTime: The duration of regular work time before overtime\ncomputation begins. This field can contain null values; a null\nvalue indicates that overtime does not apply. The unit for this field value is specified by the time_units parameter. For example, if the driver is to be paid overtime pay when\nthe total route duration extends beyond eight hours,\nOvertimeStartTime is specified as 480 (8 hours * 60 minutes/hour),\ngiven the time_units parameter is set to Minutes. \n CostPerUnitOvertime: The monetary cost incurred per time unit of overtime work.\nThis field can contain null values; a null value indicates that the\nCostPerUnitOvertime value is the same as the CostPerUnitTime\nvalue. \n MaxOrderCount: The maximum allowable number of orders on the route. This\nfield can't contain null values and has a default value of\n30. This value cannot exceed 200. \n MaxTotalTime: The maximum allowable route duration. The route duration\nincludes travel times as well as service and wait times at orders,\ndepots, and breaks. This field can contain null values; a null\nvalue indicates that there is no constraint on the route\nduration. The unit for this field value is specified by the time_units parameter. \n MaxTotalTravelTime: The maximum allowable travel time for the route. The\ntravel time includes only the time spent driving on the network and\ndoes not include service or wait times. This field can contain null values; a null value indicates\nthere is no constraint on the maximum allowable travel time. This\nfield value can't be larger than the MaxTotalTime field\nvalue. The unit for this field value is specified by the time_units parameter. \n MaxTotalDistance: The maximum allowable travel distance for the\nroute. The unit for this field value is specified by the distance_units parameter. This field can contain null values; a null value indicates\nthat there is no constraint on the maximum allowable travel\ndistance. \n SpecialtyNames: A space-separated string containing the names of the\nspecialties supported by the route. A null value indicates that the\nroute does not support any specialties. This field is a foreign key to the SpecialtyNames field in\nthe orders class. To illustrate what specialties are and how they work,\nassume a lawn care and tree trimming company has a portion of its\norders that requires a bucket truck to trim tall trees. The company\nwould enter BucketTruck in the SpecialtyNames field for these\norders to indicate their special need. SpecialtyNames would be left\nas null for the other orders. Similarly, the company would also\nenter BucketTruck in the SpecialtyNames field of routes that are\ndriven by trucks with hydraulic booms. It would leave the field\nnull for the other routes. At solve time, the VRP solver assigns\norders without special needs to any route, but it only assigns\norders that need bucket trucks to routes that have them. \n AssignmentRule: This specifies whether the route can be used or not when\nsolving the problem. This field is constrained by a domain of\nvalues, which are listed below (use the numeric code, not the name in parentheses). 1 (Include)\u2014The route is included in the solve operation.\nThis is the default value. 2 (Exclude)\u2014The route is excluded from the solve\noperation.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "Name", "type": "esriFieldTypeString", "alias": "Name", "length": 1024 }, { "name": "StartDepotName", "type": "esriFieldTypeString", "alias": "StartDepotName", "length": 500 }, { "name": "EndDepotName", "type": "esriFieldTypeString", "alias": "EndDepotName", "length": 500 }, { "name": "StartDepotServiceTime", "type": "esriFieldTypeDouble", "alias": "StartDepotServiceTime" }, { "name": "EndDepotServiceTime", "type": "esriFieldTypeDouble", "alias": "EndDepotServiceTime" }, { "name": "EarliestStartTime", "type": "esriFieldTypeDate", "alias": "EarliestStartTime", "length": 8 }, { "name": "LatestStartTime", "type": "esriFieldTypeDate", "alias": "LatestStartTime", "length": 8 }, { "name": "ArriveDepartDelay", "type": "esriFieldTypeDouble", "alias": "ArriveDepartDelay" }, { "name": "Capacities", "type": "esriFieldTypeString", "alias": "Capacities", "length": 128 }, { "name": "FixedCost", "type": "esriFieldTypeDouble", "alias": "FixedCost" }, { "name": "CostPerUnitTime", "type": "esriFieldTypeDouble", "alias": "CostPerUnitTime" }, { "name": "CostPerUnitDistance", "type": "esriFieldTypeDouble", "alias": "CostPerUnitDistance" }, { "name": "OvertimeStartTime", "type": "esriFieldTypeDouble", "alias": "OvertimeStartTime" }, { "name": "CostPerUnitOvertime", "type": "esriFieldTypeDouble", "alias": "CostPerUnitOvertime" }, { "name": "MaxOrderCount", "type": "esriFieldTypeInteger", "alias": "MaxOrderCount" }, { "name": "MaxTotalTime", "type": "esriFieldTypeDouble", "alias": "MaxTotalTime" }, { "name": "MaxTotalTravelTime", "type": "esriFieldTypeDouble", "alias": "MaxTotalTravelTime" }, { "name": "MaxTotalDistance", "type": "esriFieldTypeDouble", "alias": "MaxTotalDistance" }, { "name": "SpecialtyNames", "type": "esriFieldTypeString", "alias": "SpecialtyNames", "length": 1024 }, { "name": "AssignmentRule", "type": "esriFieldTypeInteger", "alias": "AssignmentRule" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeRequired", "category": "" }, { "name": "breaks", "dataType": "GPRecordSet", "displayName": "Breaks", "description": "These are the rest periods, or breaks, for the routes in a given\nvehicle routing problem. A break is associated with exactly one\nroute, and it can be taken after completing an order, while en\nroute to an order, or prior to servicing an order. It has a start\ntime and a duration for which the driver may or may not be paid.\nThere are three options for establishing when a break begins: using\na time window, a maximum travel time, or a maximum work\ntime. When specifying the breaks, you can set properties for each one, such as its name or service time, by using attributes. The orders can be specified with the following attributes: \n ObjectID: The system-managed ID field. \n RouteName: The name of the route to which the break applies. Although\na break is assigned to exactly one route, many breaks can be\nassigned to the same route. This field is a foreign key to the Name field in the\nroutes parameter, so it can't have a null value. \n Precedence: Precedence values sequence the breaks of a given route.\nBreaks with a precedence value of 1 occur before those with a value\nof 2, and so on. All breaks must have a precedence value, regardless of\nwhether they are time-window, maximum-travel-time, or\nmaximum-work-time breaks. \n ServiceTime: The duration of the break. This field can contain null\nvalues; a null value indicates no service time. The unit for this field value is specified by the time_units parameter. \n TimeWindowStart: The starting time of the break's time window. If this field is null and TimeWindowEnd has a valid\ntime-of-day value, the break is allowed to start any time before the\nTimeWindowEnd value. If this field has a value, the MaxTravelTimeBetweenBreaks and\nMaxCumulWorkTime field values must be null; moreover, all other breaks in the\nanalysis layer must have null values for MaxTravelTimeBetweenBreaks\nand MaxCumulWorkTime. An error will occur at solve time if a route has multiple\nbreaks with overlapping time windows. The time window fields in breaks can contain a time-only\nvalue or a date and time value. If a time field, such as\nTimeWindowStart, has a time-only value (for example, 12:00 PM), the\ndate is assumed to be the date specified by the default_date\nparameter. Using date and time values (for example, 7/11/2012 12:00\nPM) allows you to specify time windows that span two or more days.\nThis is especially beneficial when a break should be taken sometime\nbefore and after midnight. When solving a problem that spans multiple time zones, each break's time-window values refer to the time zone in which the associated route, as specified by the RouteName field, is located. \n TimeWindowEnd: The ending time of the break's time window. If this field is null and TimeWindowStart has a valid\ntime-of-day value, the break is allowed to start any time after the\nTimeWindowStart value. If this field has a value, MaxTravelTimeBetweenBreaks and\nMaxCumulWorkTime must be null; moreover, all other breaks in the\nanalysis layer must have null values for MaxTravelTimeBetweenBreaks\nand MaxCumulWorkTime. \n MaxViolationTime: This field specifies the maximum allowable violation time\nfor a time-window break. A time window is considered violated if\nthe arrival time falls outside the time range. A zero value indicates the time window cannot be violated;\nthat is, the time window is hard. A nonzero value specifies the\nmaximum amount of lateness; for example, the break can begin up to\n30 minutes beyond the end of its time window, but the lateness is\npenalized as per the Time Window Violation Importance\nparameter. This property can be null; a null value with\nTimeWindowStart and TimeWindowEnd values indicates that there is no\nlimit on the allowable violation time. If\nMaxTravelTimeBetweenBreaks or MaxCumulWorkTime has a value,\nMaxViolationTime must be null. The unit for this field value is specified by the time_units parameter. \n MaxTravelTimeBetweenBreaks: The maximum amount of travel time that can be accumulated\nbefore the break is taken. The travel time is accumulated either\nfrom the end of the previous break or, if a break has not yet been\ntaken, from the start of the route. If this is the route's final break,\nMaxTravelTimeBetweenBreaks also indicates the maximum travel time\nthat can be accumulated from the final break to the end\ndepot. This field is designed to limit how long a person can\ndrive until a break is required. For instance, if the Time Field\nUnits parameter (time_units for Python) of the analysis is set to\nMinutes, and MaxTravelTimeBetweenBreaks has a value of 120, the\ndriver will get a break after two hours of driving. To assign a\nsecond break after two more hours of driving, the second break's\nMaxTravelTimeBetweenBreaks property should be 120. If this field has a value, TimeWindowStart, TimeWindowEnd,\nMaxViolationTime, and MaxCumulWorkTime must be null for an analysis\nto solve successfully. The unit for this field value is specified by the time_units parameter. \n MaxCumulWorkTime: The maximum amount of work time that can be accumulated\nbefore the break is taken. Work time is always accumulated from the\nbeginning of the route. Work time is the sum of travel time and service times at\norders, depots, and breaks. Note, however, that this excludes wait\ntime, which is the time a route (or driver) spends waiting at an\norder or depot for a time window to begin. This field is designed to limit how long a person can work\nuntil a break is required. For instance, if the time_units\nparameter is set to Minutes,\nMaxCumulWorkTime has a value of 120, and ServiceTime has a value of\n15, the driver will get a 15-minute break after two hours of\nwork. Continuing with the last example, assume a second break is\nneeded after three more hours of work. To specify this break, you\nwould enter 315 (five hours and 15 minutes) as the second break's\nMaxCumulWorkTime value. This number includes the MaxCumulWorkTime\nand ServiceTime values of the preceding break, along with the three\nadditional hours of work time before granting the second break. To\navoid taking maximum-work-time breaks prematurely, remember that\nthey accumulate work time from the beginning of the route and that\nwork time includes the service time at previously visited depots,\norders, and breaks. If this field has a value, TimeWindowStart, TimeWindowEnd,\nMaxViolationTime, and MaxTravelTimeBetweenBreaks must be null for\nan analysis to solve successfully. The unit for this field value is specified by the time_units parameter. \n IsPaid: A Boolean value indicating whether the break is paid or\nunpaid. A True value indicates that the time spent at the break is\nincluded in the route cost computation and overtime determination.\nA False value indicates otherwise. The default value is\nTrue. \n Sequence: As an input field, this indicates the sequence of the\nbreak on its route. This field can contain null values. The input\nsequence values are positive and unique for each route (shared\nacross renewal depot visits, orders, and breaks) but need not start\nfrom 1 or be contiguous. The solver modifies the sequence field. After solving,\nthis field contains the sequence value of the break on its route.\nOutput sequence values for a route are shared across depot visits,\norders, and breaks; start from 1 (at the starting depot); and are\nconsecutive.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "RouteName", "type": "esriFieldTypeString", "alias": "RouteName", "length": 1024 }, { "name": "Precedence", "type": "esriFieldTypeInteger", "alias": "Precedence" }, { "name": "ServiceTime", "type": "esriFieldTypeDouble", "alias": "ServiceTime" }, { "name": "TimeWindowStart", "type": "esriFieldTypeDate", "alias": "TimeWindowStart", "length": 8 }, { "name": "TimeWindowEnd", "type": "esriFieldTypeDate", "alias": "TimeWindowEnd", "length": 8 }, { "name": "MaxViolationTime", "type": "esriFieldTypeDouble", "alias": "MaxViolationTime" }, { "name": "MaxTravelTimeBetweenBreaks", "type": "esriFieldTypeDouble", "alias": "MaxTravelTimeBetweenBreaks" }, { "name": "MaxCumulWorkTime", "type": "esriFieldTypeDouble", "alias": "MaxCumulWorkTime" }, { "name": "IsPaid", "type": "esriFieldTypeInteger", "alias": "IsPaid" }, { "name": "Sequence", "type": "esriFieldTypeInteger", "alias": "Sequence" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeRequired", "category": "" }, { "name": "time_units", "dataType": "GPString", "displayName": "Time Units", "description": "The time units for all time-based field values in the\nanalysis. Many features and records in a VRP analysis have fields\nfor storing time values, such as ServiceTime for orders and\nCostPerUnitTime for routes. To minimize data entry requirements,\nthese field values don't include units. Instead, all distance-based\nfield values must be entered in the same units, and this parameter\nis used to specify the units of those values. Note that output time-based fields use the same units\nspecified by this parameter.", "direction": "esriGPParameterDirectionInput", "defaultValue": "Minutes", "parameterType": "esriGPParameterTypeRequired", "category": "", "choiceList": [ "Seconds", "Minutes", "Hours", "Days" ] }, { "name": "distance_units", "dataType": "GPString", "displayName": "Distance Units", "description": "The distance units for all distance-based field values in\nthe analysis. Many features and records in a VRP analysis have\nfields for storing distance values, such as MaxTotalDistance and\nCostPerUnitDistance for Routes. To minimize data entry\nrequirements, these field values don't include units. Instead, all\ndistance-based field values must be entered in the same units, and\nthis parameter is used to specify the units of those\nvalues. Note that output distance-based fields use the same units\nspecified by this parameter.", "direction": "esriGPParameterDirectionInput", "defaultValue": "Miles", "parameterType": "esriGPParameterTypeRequired", "category": "", "choiceList": [ "Meters", "Kilometers", "Feet", "Yards", "Miles", "NauticalMiles" ] }, { "name": "analysis_region", "dataType": "GPString", "displayName": "Analysis Region", "description": "Specify the region in which to perform the analysis. If a value is not specified for this parameter, the tool\nwill automatically calculate the region name based on the location\nof the input points. Setting the name of the region is recommended to speed up the\ntool execution. To specify a region, use one of\nthe following values: EuropeGreece India JapanKorea MiddleEastAndAfrica NorthAmerica Oceania SouthAmerica SouthEastAsiaTaiwanThailand", "direction": "esriGPParameterDirectionInput", "defaultValue": "", "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis", "choiceList": [ "Streets_ND" ] }, { "name": "default_date", "dataType": "GPDate", "displayName": "Default Date", "description": "The default date for time field values that specify a time\nof day without including a date. You can find these time fields in various input parameters, such as the ServiceTime attributes in the orders and breaks parameters.", "direction": "esriGPParameterDirectionInput", "defaultValue": null, "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis" }, { "name": "uturn_policy", "dataType": "GPString", "displayName": "UTurn at Junctions", "description": "Use this parameter to restrict or permit the service area to make U-turns at junctions. To understand the parameter values, consider for a moment the following terminology: a junction is a point where a street segment ends and potentially connects to one or more other segments; a pseudo-junction is a point where exactly two streets connect to one another; an intersection is a point where three or more streets connect; and a dead-end is where one street segment ends without connecting to another. Given this information, the parameter can have the following values: ALLOW_UTURNS\u2014U-turns are permitted everywhere. Allowing\nU-turns implies that the vehicle can turn around at any junction and\ndouble back on the same street. This is the default value. NO_UTURNS\u2014U-turns are prohibited at all junctions: pseudo-junctions, intersections, and dead-ends.\nNote, however, that U-turns may be permitted even when this option is chosen. To prevent U-turns at incidents and facilities, set\nthe CurbApproach field value to\nprohibit U-turns. ALLOW_DEAD_ENDS_ONLY\u2014U-turns are prohibited at all\njunctions, except those that have only one connected street feature (a dead\nend).ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLY\u2014U-turns are prohibited at\npseudo-junctions where exactly two adjacent streets meet, but U-turns are permitted\nat intersections and dead ends. This prevents turning around in the middle of the road where one length of road happened to be digitized as two street features. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value.", "direction": "esriGPParameterDirectionInput", "defaultValue": "ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLY", "parameterType": "esriGPParameterTypeOptional", "category": "Custom Travel Mode", "choiceList": [ "ALLOW_UTURNS", "NO_UTURNS", "ALLOW_DEAD_ENDS_ONLY", "ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLY" ] }, { "name": "time_window_factor", "dataType": "GPString", "displayName": "Time Window Factor", "description": "Rates the importance of honoring time windows. There are\nthree options described below. High\u2014Places more importance on arriving at stops on time\nthan on minimizing drive times. Organizations that make\ntime-critical deliveries or that are very concerned with customer\nservice would choose High. Medium\u2014This is the default value. Balances the importance\nof minimizing drive times and arriving within time\nwindows. Low\u2014Places more importance on minimizing drive times and\nless on arriving at stops on time. You may want to use this setting\nif you have a growing backlog of service requests. For the purpose\nof servicing more orders in a day and reducing the backlog, you can\nchoose Low even though customers might be inconvenienced with your\nlate arrivals.", "direction": "esriGPParameterDirectionInput", "defaultValue": "Medium", "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis", "choiceList": [ "High", "Medium", "Low" ] }, { "name": "spatially_cluster_routes", "dataType": "GPBoolean", "displayName": "Spatially Cluster Routes", "description": "CLUSTER (True)\u2014Dynamic seed points are automatically created for\nall routes, and the orders assigned to an individual\nroute are spatially clustered. Clustering orders tends to keep\nroutes in smaller areas and reduce how often different route lines\nintersect one another; yet, clustering also tends to increase\noverall travel times. NO_CLUSTER (False)\u2014Dynamic seed points aren't\ncreated. Choose this option if route zones are\nspecified.", "direction": "esriGPParameterDirectionInput", "defaultValue": true, "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis" }, { "name": "route_zones", "dataType": "GPFeatureRecordSetLayer", "displayName": "Route Zones", "description": "Delineates work territories for given routes. A route zone\nis a polygon feature and is used to constrain routes to servicing\nonly those orders that fall within or near the specified area. Here\nare some examples of when route zones may be useful: Some of your employees don't have the required permits to\nperform work in certain states or communities. You can create a\nhard route zone so they only visit orders in areas where they meet\nthe requirements. One of your vehicles breaks down frequently so you want to\nminimize response time by having it only visit orders that are\nclose to your maintenance garage. You can create a soft or hard\nroute zone to keep the vehicle nearby. When specifying the route zones, you need to set properties for each one, such as its associated route, by using attributes. The route zones can be specified with the following attributes: \n ObjectID: The system-managed ID field. \n RouteName: The name of the route to which this zone applies. A route\nzone can have a maximum of one associated route. This field can't\ncontain null values, and it is a foreign key to the Name field in\nthe feature in the routes parameter. \n IsHardZone: A Boolean value indicating a hard or soft route zone. A\nTrue value indicates that the route zone is hard; that is, an order\nthat falls outside the route zone polygon can't be assigned to the\nroute. The default value is 1 (True). A False value (0) indicates\nthat such orders can still be assigned, but the cost of servicing\nthe order is weighted by a function that is based on the Euclidean\ndistance from the route zone. Basically, this means that as the\nstraight-line distance from the soft zone to the order increases,\nthe likelihood of the order being assigned to the route\ndecreases.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "geometryType": "esriGeometryPolygon", "spatialReference": { "wkid": 4326, "latestWkid": 4326 }, "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "RouteName", "type": "esriFieldTypeString", "alias": "RouteName", "length": 1024 }, { "name": "IsHardZone", "type": "esriFieldTypeInteger", "alias": "IsHardZone" }, { "name": "Shape_Length", "type": "esriFieldTypeDouble", "alias": "Shape_Length" }, { "name": "Shape_Area", "type": "esriFieldTypeDouble", "alias": "Shape_Area" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis" }, { "name": "route_renewals", "dataType": "GPRecordSet", "displayName": "Route Renewals", "description": "Specifies the intermediate depots that routes can visit to\nreload or unload the cargo they are delivering or picking up.\nSpecifically, a route renewal links a route to a depot. The\nrelationship indicates the route can renew (reload or unload while\nen route) at the associated depot. Route renewals can be used to model scenarios in which a\nvehicle picks up a full load of deliveries at the starting depot,\nservices the orders, returns to the depot to renew its load of\ndeliveries, and continues servicing more orders. For example, in\npropane gas delivery, the vehicle may make several deliveries until\nits tank is nearly or completely depleted, visit a refueling point,\nand make more deliveries. Here are a few rules and options to consider when also\nworking with route seed points: The reload/unload point, or renewal location, can be\ndifferent from the start or end depot. Each route can have one or many predetermined renewal\nlocations. A renewal location may be used more than once by a single\nroute. In some cases where there may be several potential renewal\nlocations for a route, the closest available renewal location is\nchosen by the solver. When specifying the route renewals, you need to set properties for each one, such as the name of the depot where the route renewal can occur, by using attributes. The route renewals can be specified with the following attributes: \n ObjectID: The system-managed ID field. \n DepotName: The name of the depot where this renewal takes place. This\nfield can't contain a null value and is a foreign key to the Name\nfield in the depots parameter. \n RouteName: The name of the route to which this renewal applies. This\nfield can't contain a null value and is a foreign key to the Name\nfield in the routes parameter. \n ServiceTime: The service time for the renewal. This field can contain a\nnull value; a null value indicates zero service time. The unit for this field value is specified by the time_units parameter. The time taken to load a vehicle at a renewal depot may\ndepend on the size of the vehicle and how full or empty the vehicle\nis. However, the service time for a route renewal is a fixed value\nand does not take into account the actual load. As such, the\nrenewal service time should be given a value corresponding to a\nfull truckload, an average truckload, or another time estimate of\nyour choice.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "RouteName", "type": "esriFieldTypeString", "alias": "RouteName", "length": 1024 }, { "name": "DepotName", "type": "esriFieldTypeString", "alias": "DepotName", "length": 500 }, { "name": "ServiceTime", "type": "esriFieldTypeDouble", "alias": "ServiceTime" }, { "name": "Sequences", "type": "esriFieldTypeString", "alias": "Sequences", "length": 128 } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis" }, { "name": "order_pairs", "dataType": "GPRecordSet", "displayName": "Order Pairs", "description": "This parameter pairs pickup and delivery orders so they are serviced by\nthe same route. Sometimes it is required that the pickup and delivery for\norders be paired. For example, a courier company might need to have\na route pick up a high-priority package from one order and deliver\nit to another without returning to a depot, or sorting station, to\nminimize delivery time. These related orders can be assigned to the\nsame route with the appropriate sequence by using order pairs.\nMoreover, restrictions on how long the package can stay in the\nvehicle can also be assigned; for example, the package might be a\nblood sample that has to be transported from the doctor's office to\nthe lab within two hours. When specifying the order pairs, you need to set properties for each one, such as the names of the two orders, by using attributes. The order pairs can be specified with the following attributes: \n ObjectID: The system-managed ID field. \n FirstOrderName: The name of the first order of the pair. This field is a\nforeign key to the Name field in the orders parameter. \n SecondOrderName: The name of the second order of the pair. This field is a\nforeign key to the name field in the orders parameter. The first order in the pair must be a pickup order; that\nis, the value for its DeliveryQuantities field is null. The second\norder in the pair must be a delivery order; that is, the value for\nits PickupQuantities field is null. The quantity picked up\nat the first order must agree with the quantity delivered\nat the second order. As a special case, both orders may have zero\nquantities for scenarios where capacities are not used. The order quantities are not loaded or unloaded at\ndepots. \n MaxTransitTime: The maximum transit time for the pair. The transit time is\nthe duration from the departure time of the first order to the\narrival time at the second order. This constraint limits the\ntime-on-vehicle, or ride time, between the two orders. When a\nvehicle is carrying people or perishable goods, the ride time is\ntypically shorter than that of a vehicle carrying packages or\nnonperishable goods. This field can contain null values; a null\nvalue indicates that there is no constraint on the ride\ntime. The unit for this field value is specified by the time_units parameter. Excess transit time (measured with respect to the direct\ntravel time between order pairs) can be tracked and weighted by the\nsolver. Because of this, you can direct the VRP solver to take one\nof three approaches: Minimize the overall excess transit time, regardless of\nthe increase in travel cost for the fleet. Find a solution that balances overall violation time and\ntravel cost. Ignore the overall excess transit time and, instead,\nminimize the travel cost for the fleet. By assigning an importance level for the excess_transit_factor parameter, you are, in effect, choosing one of these\nthree approaches. Regardless of the importance level, the solver\nwill always return an error if the MaxTransitTime value is\nsurpassed.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "FirstOrderName", "type": "esriFieldTypeString", "alias": "FirstOrderName", "length": 500 }, { "name": "SecondOrderName", "type": "esriFieldTypeString", "alias": "SecondOrderName", "length": 500 }, { "name": "MaxTransitTime", "type": "esriFieldTypeDouble", "alias": "MaxTransitTime" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis" }, { "name": "excess_transit_factor", "dataType": "GPString", "displayName": "Excess Transit Factor", "description": "Rates the importance of reducing excess transit time of\norder pairs. Excess transit time is the amount of time exceeding\nthe time required to travel directly between the paired orders.\nExcess time can be caused by driver breaks or travel to\nintermediate orders and depots. Listed below are the three values\nyou can choose from. High\u2014The solver tries to find a solution with the least\nexcess transit time between paired orders at the expense of\nincreasing the overall travel costs. It makes sense to use this\nsetting if you are transporting people between paired orders and\nyou want to shorten their ride time. This is characteristic of taxi\nservices. Medium\u2014This is the default setting. The solver looks for\na balance between reducing excess transit time and reducing the\noverall solution cost. Low\u2014The solver tries to find a solution that minimizes\noverall solution cost, regardless of excess transit time. This\nsetting is commonly used with courier services. Since couriers\ntransport packages as opposed to people, they don't need to worry\nabout ride time. Using Low allows the couriers to service paired\norders in the proper sequence and minimize the overall solution\ncost.", "direction": "esriGPParameterDirectionInput", "defaultValue": "Medium", "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis", "choiceList": [ "High", "Medium", "Low" ] }, { "name": "point_barriers", "dataType": "GPFeatureRecordSetLayer", "displayName": "Point Barriers", "description": "Specify one or more points to act as temporary\nrestrictions or represent additional time or distance that may be\nrequired to travel on the underlying streets. For example, a point\nbarrier can be used to represent a fallen tree along a street or\ntime delay spent at a railroad crossing. The tool imposes a limit of 250 points that can be added\nas barriers. When specifying the point barriers, you can set properties for each one, such as its name or barrier type, by using attributes. The point barriers can be specified with the following attributes: Name: The name of the barrier. BarrierType: Specifies whether the point barrier restricts travel\ncompletely or adds time or distance when it is crossed. The value\nfor this attribute is specified as one of the following\nintegers (use the numeric code, not the name in parentheses): 0 (Restriction)\u2014Prohibits travel through the barrier. The barrier\nis referred to as a restriction point barrier since it acts as a\nrestriction. 2 (Added Cost)\u2014Traveling through the barrier increases the travel\ntime or distance by the amount specified in the\nAdditional_Time or Additional_Distance field. This barrier type is\nreferred to as an added-cost point barrier. Additional_Time: Indicates how much travel time is added when the\nbarrier is traversed. This field is applicable only for added-cost\nbarriers and only if the measurement units are time based. This field\nvalue must be greater than or equal to zero, and its units are the same as those specified in the\nMeasurement Units parameter. Additional_Distance: Indicates how much distance is added when the barrier is\ntraversed. This field is applicable only for added-cost barriers\nand only if the measurement units are distance based. The field value\nmust be greater than or equal to zero, and its units are the same as those specified in the\nMeasurement Units parameter.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "geometryType": "esriGeometryPoint", "spatialReference": { "wkid": 4326, "latestWkid": 4326 }, "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "OBJECTID" }, { "name": "Name", "type": "esriFieldTypeString", "alias": "Name", "length": 500 }, { "name": "BarrierType", "type": "esriFieldTypeInteger", "alias": "Barrier Type" }, { "name": "Additional_Time", "type": "esriFieldTypeDouble", "alias": "Additional Time" }, { "name": "Additional_Distance", "type": "esriFieldTypeDouble", "alias": "Additional Distance" }, { "name": "CurbApproach", "type": "esriFieldTypeSmallInteger", "alias": "CurbApproach" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeOptional", "category": "Barriers" }, { "name": "line_barriers", "dataType": "GPFeatureRecordSetLayer", "displayName": "Line Barriers", "description": "Specify one or more lines that prohibit travel anywhere\nthe lines intersect the streets. For example, a parade or protest\nthat blocks traffic across several street segments can be modeled\nwith a line barrier. A line barrier can also quickly fence off\nseveral roads from being traversed, thereby channeling possible\nroutes away from undesirable parts of the street\nnetwork. The tool imposes a limit on the number of streets you can\nrestrict using the Line Barriers parameter. While there is no limit on\nthe number of lines you can specify as line barriers, the combined\nnumber of streets intersected by all the lines cannot exceed\n500. When specifying the line barriers, you can set a name property for each one by using the following attribute: Name: The name of the barrier.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "geometryType": "esriGeometryPolyline", "spatialReference": { "wkid": 4326, "latestWkid": 4326 }, "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "OBJECTID" }, { "name": "Name", "type": "esriFieldTypeString", "alias": "Name", "length": 500 }, { "name": "SHAPE_Length", "type": "esriFieldTypeDouble", "alias": "SHAPE_Length" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeOptional", "category": "Barriers" }, { "name": "polygon_barriers", "dataType": "GPFeatureRecordSetLayer", "displayName": "Polygon Barriers", "description": "Specify polygons that either completely restrict travel or\nproportionately scale the time or distance required to travel on\nthe streets intersected by the polygons. The service imposes a limit on the number of streets you\ncan restrict using the Polygon Barriers parameter. While there is\nno limit on the number of polygons you can specify as the polygon\nbarriers, the combined number of streets intersected by all the\npolygons should not exceed 2,000. When specifying the polygon barriers, you can set properties for each one, such as its name or barrier type, by using attributes. The polygon barriers can be specified with the following attributes: Name: The name of the barrier. BarrierType: Specifies whether the barrier restricts travel completely\nor scales the time or distance for traveling through it. The field\nvalue is specified as one of the following integers (use the numeric code, not the name in parentheses): 0 (Restriction)\u2014Prohibits traveling through any part of the barrier.\nThe barrier is referred to as a restriction polygon barrier since it\nprohibits traveling on streets intersected by the barrier. One use\nof this type of barrier is to model floods covering areas of the\nstreet that make traveling on those streets impossible. 1 (Scaled Cost)\u2014Scales the time or distance required to travel the\nunderlying streets by a factor specified using the ScaledTimeFactor\nor ScaledDistanceFactor field. If the streets are partially\ncovered by the barrier, the travel time or distance is apportioned\nand then scaled. For example, a factor 0.25 would mean that travel\non underlying streets is expected to be four times faster than\nnormal. A factor of 3.0 would mean it is expected to take three\ntimes longer than normal to travel on underlying streets. This\nbarrier type is referred to as a scaled-cost polygon barrier. It\nmight be used to model storms that reduce travel speeds in specific\nregions. ScaledTimeFactor: This is the factor by which the travel time of the streets\nintersected by the barrier is multiplied. This field is applicable\nonly for scaled-cost barriers and only if the measurement units are time\nbased. The field value must be greater than zero. ScaledDistanceFactor: This is the factor by which the distance of the streets\nintersected by the barrier is multiplied. This attribute is\napplicable only for scaled-cost barriers and only if the measurement\nunits are distance based. The attribute value must be greater than\nzero.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "geometryType": "esriGeometryPolygon", "spatialReference": { "wkid": 4326, "latestWkid": 4326 }, "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "Name", "type": "esriFieldTypeString", "alias": "Name", "length": 128 }, { "name": "BarrierType", "type": "esriFieldTypeInteger", "alias": "BarrierType" }, { "name": "Scaled_Time", "type": "esriFieldTypeDouble", "alias": "Scaled_Time" }, { "name": "Scaled_Distance", "type": "esriFieldTypeDouble", "alias": "Scaled_Distance" }, { "name": "Shape_Length", "type": "esriFieldTypeDouble", "alias": "Shape_Length" }, { "name": "Shape_Area", "type": "esriFieldTypeDouble", "alias": "Shape_Area" } ], "features": [], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeOptional", "category": "Barriers" }, { "name": "use_hierarchy_in_analysis", "dataType": "GPBoolean", "displayName": "Use Hierarchy", "description": "Specify whether hierarchy should be used when finding the best\nroutes. Checked (True)\u2014Use hierarchy when finding routes. When\nhierarchy is used, the tool prefers higher-order streets, such as\nfreeways, to lower-order streets, such as local roads, and can be used\nto simulate the driver preference of traveling on freeways instead\nof local roads even if that means a longer trip. This is especially\ntrue when finding routes to faraway locations, because drivers on long-distance trips tend to prefer traveling on freeways where stops, intersections, and turns can be avoided. Using hierarchy is computationally faster,\nespecially for long-distance routes, as the tool has to select the\nbest route from a relatively smaller subset of streets. Unchecked (False)\u2014Do not use hierarchy when finding routes. If\nhierarchy is not used, the tool considers all the streets and doesn't\nprefer higher-order streets when finding the route. This is often\nused when finding short-distance routes within a city. The tool automatically reverts to using hierarchy if the\nstraight-line distance between orders, depots, or orders and depots is\ngreater than 50 miles, even if you have set this parameter to not use hierarchy. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value.", "direction": "esriGPParameterDirectionInput", "defaultValue": true, "parameterType": "esriGPParameterTypeOptional", "category": "Custom Travel Mode" }, { "name": "restrictions", "dataType": "GPMultiValue:GPString", "displayName": "Restrictions", "description": "Specify which restrictions should be honored by the tool when finding the best routes. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. A restriction represents a driving\npreference or requirement. In most cases, restrictions cause roads\nto be prohibited. For instance, using an Avoid Toll Roads restriction will result in a route that will include toll roads only when it is absolutely required to travel on toll roads in order to visit an incident or a facility. Height Restriction makes it possible to route around any clearances that are lower than the height of your vehicle. If you are carrying corrosive materials on your vehicle, using the Any Hazmat Prohibited restriction prevents hauling the materials along roads where it is marked as illegal to do so. Below is a list of available restrictions and a short description. Some restrictions require an additional value to be\nspecified for their desired use. This value needs to be associated\nwith the restriction name and a specific parameter intended to work\nwith the restriction. You can identify such restrictions if their\nnames appear under the AttributeName column in the Attribute\nParameter Values parameter. The ParameterValue field should be\nspecified in the Attribute Parameter Values parameter for the\nrestriction to be correctly used when finding traversable roads. Some restrictions are supported only in certain countries; their availability is stated by region in the list below. Of the restrictions that have limited availability within a region, you can check whether the restriction is available in a particular country by looking at the table in the Country List section of the Data coverage for network analysis services web page. If a country has a value of Yes in the Logistics Attribute column, the restriction with select availability in the region is supported in that country. If you specify restriction names that are not available in the country where your incidents are located, the service ignores the invalid restrictions. The service also ignores restrictions whose Restriction Usage parameter value is between 0 and 1 (see the Attribute Parameter Value parameter). It prohibits all restrictions whose Restriction Usage parameter value is greater than 0. The tool supports the following restrictions:Any Hazmat Prohibited\u2014The results will not include roads\nwhere transporting any kind of hazardous material is\nprohibited. Availability: Select countries in North America and EuropeAvoid Carpool Roads\u2014The results will avoid roads that are\ndesignated exclusively for carpool (high-occupancy)\nvehicles. Availability: All countriesAvoid Express Lanes\u2014The results will avoid roads designated\nas express lanes. Availability: All countriesAvoid Ferries\u2014The results will avoid ferries. Availability: All countriesAvoid Gates\u2014The results will avoid roads where there are\ngates such as keyed access or guard-controlled\nentryways.Availability: All countriesAvoid Limited Access Roads\u2014The results will avoid roads\nthat are limited access highways.Availability: All countriesAvoid Private Roads\u2014The results will avoid roads that are\nnot publicly owned and maintained.Availability: All countriesAvoid Toll Roads\u2014The results will avoid toll\nroads.Availability: All countriesAvoid Truck Restricted Roads\u2014The results will avoid roads where trucks are not allowed, except when making deliveries.Availability: All countries Avoid Unpaved Roads\u2014The results will avoid roads that are\nnot paved (for example, dirt, gravel, and so on). Availability: All countriesAxle Count Restriction\u2014The results will not include roads\nwhere trucks with the specified number of axles are prohibited. The\nnumber of axles can be specified using the Number of Axles\nrestriction parameter.Availability: Select countries in North America and EuropeDriving a Bus\u2014The results will not include roads where\nbuses are prohibited. Using this restriction will also ensure that\nthe results will honor one-way streets. Availability: All countriesDriving a Delivery Vehicle\u2014The results will not include\nroads where delivery vehicles are prohibited. Using this restriction\nwill also ensure that the results will honor one-way\nstreets. Availability: All countriesDriving a Taxi\u2014The results will not include roads where\ntaxis are prohibited. Using this restriction will also ensure that\nthe results will honor one-way streets. Availability: All countriesDriving a Truck\u2014The results will not include roads where\ntrucks are prohibited. Using this restriction will also ensure that\nthe results will honor one-way streets. Availability: All countriesDriving an Automobile\u2014The results will not include roads\nwhere automobiles are prohibited. Using this restriction will also\nensure that the results will honor one-way streets. Availability: All countriesDriving an Emergency Vehicle\u2014The results will not include\nroads where emergency vehicles are prohibited. Using this\nrestriction will also ensure that the results will honor one-way\nstreets.Availability: All countriesHeight Restriction\u2014The results will not include roads\nwhere the vehicle height exceeds the maximum allowed height for the\nroad. The vehicle height can be specified using the Vehicle Height\n(meters) restriction parameter. Availability: Select countries in North America and EuropeKingpin to Rear Axle Length Restriction\u2014The results will\nnot include roads where the vehicle length exceeds the maximum\nallowed kingpin to rear axle for all trucks on the road. The length\nbetween the vehicle kingpin and the rear axle can be specified\nusing the Vehicle Kingpin to Rear Axle Length (meters) restriction\nparameter. Availability: Select countries in North America and EuropeLength Restriction\u2014The results will not include roads\nwhere the vehicle length exceeds the maximum allowed length for the\nroad. The vehicle length can be specified using the Vehicle Length\n(meters) restriction parameter. Availability: Select countries in North America and EuropeRiding a Motorcycle\u2014The results will not include roads\nwhere motorcycles are prohibited. Using this restriction will also\nensure that the results will honor one-way streets.Availability: All countriesRoads Under Construction Prohibited\u2014The results will not\ninclude roads that are under construction.Availability: All countriesSemi or Tractor with One or More Trailers Prohibited\u2014The\nresults will not include roads where semis or tractors with one or\nmore trailers are prohibited. Availability: Select countries in North America and EuropeSingle Axle Vehicles Prohibited\u2014The results will not\ninclude roads where vehicles with single axles are\nprohibited.Availability: Select countries in North America and EuropeTandem Axle Vehicles Prohibited\u2014The results will not\ninclude roads where vehicles with tandem axles are\nprohibited.Availability: Select countries in North America and EuropeThrough Traffic Prohibited\u2014The results will not include\nroads where through traffic (non local) is prohibited.Availability: All countriesTruck with Trailers Restriction\u2014The results will not\ninclude roads where trucks with the specified number of trailers on\nthe truck are prohibited. The number of trailers on the truck can\nbe specified using the Number of Trailers on Truck restriction\nparameter.Availability: Select countries in North America and EuropeUse Preferred Hazmat Routes\u2014The results will prefer roads\nthat are designated for transporting any kind of hazardous\nmaterials. Availability: Select countries in North America and EuropeUse Preferred Truck Routes\u2014The results will prefer roads\nthat are designated as truck routes, such as the roads that are\npart of the national network as specified by the National Surface\nTransportation Assistance Act in the United States, or roads that\nare designated as truck routes by the state or province, or roads\nthat are preferred by the trucks when driving in an\narea.Availability: Select countries in North America and EuropeWalking\u2014The results will not include roads where\npedestrians are prohibited.Availability: All countriesWeight Restriction\u2014The results will not include roads\nwhere the vehicle weight exceeds the maximum allowed weight for the\nroad. The vehicle weight can be specified using the Vehicle Weight\n(kilograms) restriction parameter.Availability: Select countries in North America and EuropeWeight per Axle Restriction\u2014The results will not include\nroads where the vehicle weight per axle exceeds the maximum allowed\nweight per axle for the road. The vehicle weight per axle can be\nspecified using the Vehicle Weight per Axle (kilograms) restriction\nparameter.Availability: Select countries in North America and EuropeWidth Restriction\u2014The results will not include roads where\nthe vehicle width exceeds the maximum allowed width for the road.\nThe vehicle width can be specified using the Vehicle Width (meters)\nrestriction parameter.Availability: Select countries in North America and EuropeThe Driving a Delivery Vehicle restriction attribute is deprecated and will be unavailable in future releases. To achieve similar results, use the Driving a Truck restriction attribute along with the Avoid Truck Restricted Roads restriction attribute.", "direction": "esriGPParameterDirectionInput", "defaultValue": [ "Driving an Automobile", "Through Traffic Prohibited", "Avoid Unpaved Roads", "Avoid Private Roads", "Avoid Gates", "Avoid Carpool Roads", "Avoid Express Lanes" ], "parameterType": "esriGPParameterTypeOptional", "category": "Custom Travel Mode", "choiceList": [ "Any Hazmat Prohibited", "Avoid Carpool Roads", "Avoid Express Lanes", "Avoid Ferries", "Avoid Gates", "Avoid Limited Access Roads", "Avoid Private Roads", "Avoid Toll Roads", "Avoid Truck Restricted Roads", "Avoid Unpaved Roads", "Driving a Bus", "Driving a Delivery Vehicle", "Driving a Taxi", "Driving a Truck", "Driving an Automobile", "Driving an Emergency Vehicle", "Height Restriction", "Length Restriction", "Through Traffic Prohibited", "Use Preferred Hazmat Routes", "Use Preferred Truck Routes", "Walking", "Weight Restriction" ] }, { "name": "attribute_parameter_values", "dataType": "GPRecordSet", "displayName": "Attribute Parameter Values", "description": "Specify additional values required by some restrictions, such as the weight of a vehicle for Weight Restriction. You can also use the attribute parameter to specify whether any restriction prohibits, avoids, or prefers\ntravel on roads that use the restriction. If the restriction is\nmeant to avoid or prefer roads, you can further specify the degree\nto which they are avoided or preferred using this\nparameter. For example, you can choose to never use toll roads, avoid them as much as possible, or even highly prefer them. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. If you specify the Attribute Parameter Values parameter from a\nfeature class, the field names on the feature class must match the fields as described below: AttributeName: Lists the name of the restriction. ParameterName: Lists the name of the parameter associated with the\nrestriction. A restriction can have one or more ParameterName field\nvalues based on its intended use. ParameterValue: The value for ParameterName used by the tool\nwhen evaluating the restriction. Attribute Parameter Values is dependent on the\nRestrictions parameter. The ParameterValue field is applicable only\nif the restriction name is specified as the value for the\nRestrictions parameter. In Attribute Parameter Values, each\nrestriction (listed as AttributeName) has a ParameterName field\nvalue, Restriction Usage, that specifies whether the restriction\nprohibits, avoids, or prefers travel on the roads associated with\nthe restriction and the degree to which the roads are avoided or\npreferred. The Restriction Usage ParameterName can be assigned any of\nthe following string values or their equivalent numeric values\nlisted within the parentheses: PROHIBITED (-1)\u2014Travel on the roads using the restriction is completely\nprohibited. AVOID_HIGH (5)\u2014It\nis highly unlikely for the tool to include in the route the roads\nthat are associated with the restriction. AVOID_MEDIUM (2)\u2014It\nis unlikely for the tool to include in the route the roads that are\nassociated with the restriction. AVOID_LOW (1.3)\u2014It\nis somewhat unlikely for the tool to include in the route the roads\nthat are associated with the restriction. PREFER_LOW (0.8)\u2014It\nis somewhat likely for the tool to include in the route the roads\nthat are associated with the restriction. PREFER_MEDIUM (0.5)\u2014It is likely for the tool to include in the route the roads that\nare associated with the restriction. PREFER_HIGH (0.2)\u2014It is highly likely for the tool to include in the route the roads\nthat are associated with the restriction. In most cases, you can use the default value, PROHIBITED,\nfor the Restriction Usage if the restriction is dependent on a\nvehicle-characteristic such as vehicle height. However, in some\ncases, the value for Restriction Usage depends on your routing\npreferences. For example, the Avoid Toll Roads restriction has the\ndefault value of AVOID_MEDIUM for the Restriction Usage parameter.\nThis means that when the restriction is used, the tool will try to\nroute around toll roads when it can. AVOID_MEDIUM also indicates\nhow important it is to avoid toll roads when finding the best\nroute; it has a medium priority. Choosing AVOID_LOW would put lower\nimportance on avoiding tolls; choosing AVOID_HIGH instead would\ngive it a higher importance and thus make it more acceptable for\nthe service to generate longer routes to avoid tolls. Choosing\nPROHIBITED would entirely disallow travel on toll roads, making it\nimpossible for a route to travel on any portion of a toll road.\nKeep in mind that avoiding or prohibiting toll roads, and thus\navoiding toll payments, is the objective for some; in contrast,\nothers prefer to drive on toll roads because avoiding traffic is\nmore valuable to them than the money spent on tolls. In the latter\ncase, you would choose PREFER_LOW, PREFER_MEDIUM, or PREFER_HIGH as\nthe value for Restriction Usage. The higher the preference, the\nfarther the tool will go out of its way to travel on the roads\nassociated with the restriction.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "displayFieldName": "", "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "ObjectID" }, { "name": "AttributeName", "type": "esriFieldTypeString", "alias": "AttributeName", "length": 255 }, { "name": "ParameterName", "type": "esriFieldTypeString", "alias": "ParameterName", "length": 255 }, { "name": "ParameterValue", "type": "esriFieldTypeString", "alias": "ParameterValue", "length": 25 } ], "features": [ { "attributes": { "OBJECTID": 28, "AttributeName": "Any Hazmat Prohibited", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 29, "AttributeName": "Avoid Carpool Roads", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 30, "AttributeName": "Avoid Express Lanes", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 31, "AttributeName": "Avoid Ferries", "ParameterName": "Restriction Usage", "ParameterValue": "AVOID_MEDIUM" } }, { "attributes": { "OBJECTID": 32, "AttributeName": "Avoid Gates", "ParameterName": "Restriction Usage", "ParameterValue": "AVOID_MEDIUM" } }, { "attributes": { "OBJECTID": 33, "AttributeName": "Avoid Limited Access Roads", "ParameterName": "Restriction Usage", "ParameterValue": "AVOID_MEDIUM" } }, { "attributes": { "OBJECTID": 34, "AttributeName": "Avoid Private Roads", "ParameterName": "Restriction Usage", "ParameterValue": "AVOID_MEDIUM" } }, { "attributes": { "OBJECTID": 35, "AttributeName": "Avoid Toll Roads", "ParameterName": "Restriction Usage", "ParameterValue": "AVOID_MEDIUM" } }, { "attributes": { "OBJECTID": 36, "AttributeName": "Avoid Truck Restricted Roads", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 37, "AttributeName": "Avoid Unpaved Roads", "ParameterName": "Restriction Usage", "ParameterValue": "AVOID_MEDIUM" } }, { "attributes": { "OBJECTID": 38, "AttributeName": "Driving a Bus", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 39, "AttributeName": "Driving a Delivery Vehicle", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 40, "AttributeName": "Driving a Taxi", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 41, "AttributeName": "Driving a Truck", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 42, "AttributeName": "Driving an Automobile", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 43, "AttributeName": "Driving an Emergency Vehicle", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 44, "AttributeName": "Height Restriction", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 45, "AttributeName": "Height Restriction", "ParameterName": "Vehicle Height (meters)", "ParameterValue": "0" } }, { "attributes": { "OBJECTID": 46, "AttributeName": "Length Restriction", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 47, "AttributeName": "Length Restriction", "ParameterName": "Vehicle Length (meters)", "ParameterValue": "0" } }, { "attributes": { "OBJECTID": 48, "AttributeName": "Through Traffic Prohibited", "ParameterName": "Restriction Usage", "ParameterValue": "AVOID_HIGH" } }, { "attributes": { "OBJECTID": 49, "AttributeName": "Use Preferred Hazmat Routes", "ParameterName": "Restriction Usage", "ParameterValue": "PREFER_MEDIUM" } }, { "attributes": { "OBJECTID": 50, "AttributeName": "Use Preferred Truck Routes", "ParameterName": "Restriction Usage", "ParameterValue": "PREFER_MEDIUM" } }, { "attributes": { "OBJECTID": 51, "AttributeName": "WalkTime", "ParameterName": "Walking Speed (km/h)", "ParameterValue": "5" } }, { "attributes": { "OBJECTID": 52, "AttributeName": "Walking", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 53, "AttributeName": "Weight Restriction", "ParameterName": "Restriction Usage", "ParameterValue": "PROHIBITED" } }, { "attributes": { "OBJECTID": 54, "AttributeName": "Weight Restriction", "ParameterName": "Vehicle Weight (kilograms)", "ParameterValue": "0" } } ], "exceededTransferLimit": false }, "parameterType": "esriGPParameterTypeOptional", "category": "Custom Travel Mode" }, { "name": "populate_route_lines", "dataType": "GPBoolean", "displayName": "Populate Route Lines", "description": "Checked (True)\u2014The output routes will have the\nexact shape of the underlying streets. Unchecked (False)\u2014No shape is generated for the\noutput routes, yet the routes will still contain tabular information about the solution. You won't be able to generate driving directions if\nroute lines aren't created. When the Route Shape parameter is set to True Shape, the\ngeneralization of the route shape can be further controlled using\nthe appropriate values for the Route Line Simplification Tolerance\nparameters. No matter which value you choose for the Route Shape\nparameter, the best routes are always determined by minimizing the\ntravel along the streets, never using the straight-line\ndistance. This means that only the route shapes are different,\nnot the underlying streets that are searched when finding the\nroute.", "direction": "esriGPParameterDirectionInput", "defaultValue": true, "parameterType": "esriGPParameterTypeOptional", "category": "Output" }, { "name": "route_line_simplification_tolerance", "dataType": "GPLinearUnit", "displayName": "Route Line Simplification Tolerance", "description": "Specify by how much you want to simplify the geometry of the output lines for routes and directions. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. The tool also ignores this parameter if the populate_route_lines parameter is unchecked (False). Simplification maintains critical\npoints on a route, such as turns at intersections, to define the\nessential shape of the route and removes other points. The\nsimplification distance you specify is the maximum allowable offset\nthat the simplified line can deviate from the original line.\nSimplifying a line reduces the number of vertices that are part of\nthe route geometry. This improves the tool execution\ntime.", "direction": "esriGPParameterDirectionInput", "defaultValue": { "distance": 10, "units": "esriMeters" }, "parameterType": "esriGPParameterTypeOptional", "category": "Custom Travel Mode" }, { "name": "populate_directions", "dataType": "GPBoolean", "displayName": "Populate Directions", "description": "Specify whether the tool should generate driving directions for\neach route. Checked (True): Indicates that the directions will be generated\nand configured based on the values for the Directions Language,\nDirections Style Name, and Directions Distance Units\nparameters. Unchecked (False): Directions are not generated, and the tool\nreturns an empty Directions layer.", "direction": "esriGPParameterDirectionInput", "defaultValue": false, "parameterType": "esriGPParameterTypeOptional", "category": "Output" }, { "name": "directions_language", "dataType": "GPString", "displayName": "Directions Language", "description": "Specify the language that should be used when generating\ndriving directions. This parameter is used only when the populate_directions parameter is checked or set to True. The parameter value can be\nspecified using one of the following two- or five-character language codes: ar\u2014Arabiccs\u2014Czech de\u2014German el\u2014Greek en\u2014English es\u2014Spanishet\u2014Estonian fr\u2014French he\u2014Hebrew it\u2014Italian ja\u2014Japanese ko\u2014Korean lt\u2014Lithuanianlv\u2014Latvian nl\u2014Dutch pl\u2014Polish pt-BR\u2014Brazilian\nPortuguese pt-PT\u2014European\nPortuguese ru\u2014Russian sv\u2014Swedishtr\u2014Turkish zh-CN\u2014Simplified\nChinese If an unsupported language code is specified, the tool\nreturns the directions using the default language,\nEnglish.", "direction": "esriGPParameterDirectionInput", "defaultValue": "en", "parameterType": "esriGPParameterTypeOptional", "category": "Output" }, { "name": "directions_style_name", "dataType": "GPString", "displayName": "Directions Style Name", "description": "Specify the name of the formatting style for the\ndirections. This parameter is used only when the Populate\nDirections parameter is checked, or set to True. The parameter can be specified\nusing the following values: NA Desktop: Generates turn-by-turn directions suitable\nfor printing. NA Navigation: Generates turn-by-turn directions designed\nfor an in-vehicle navigation device.", "direction": "esriGPParameterDirectionInput", "defaultValue": "NA Desktop", "parameterType": "esriGPParameterTypeOptional", "category": "Output", "choiceList": [ "NA Desktop", "NA Navigation" ] }, { "name": "travel_mode", "dataType": "GPString", "displayName": "Travel Mode", "description": "Specify the mode of transportation to model in the analysis. Travel modes are managed in ArcGIS Online and can be configured by the administrator of your organization to better reflect your organization's workflows. You need to specify the name of a travel mode supported by your organization. To get a list of supported travel mode names, use the same GIS server connection you used to access this tool, and from the Utilities toolbox, run GetTravelModes. The GetTravelModes tool adds a table, Supported Travel Modes, to the application. Any value in the Travel Mode Name field from the Supported Travel Modes table can be specified as input. You can also specify the value from the Travel Mode Settings field as input. This speeds up the tool execution because the tool does not have to look up the settings based on the travel mode name. The default value, Custom, allows you to configure your own travel mode using the custom travel mode parameters (UTurn at Junctions, Use Hierarchy, Restrictions, Attribute Parameter Values, and Impedance). The default values of the custom travel mode parameters model traveling by car. You may want to choose Custom and set the custom travel mode parameters listed above to model a pedestrian with a fast walking speed or a truck with a given height, weight, and cargo of certain hazardous materials. You may choose to do this to try out different settings to get the analysis results you want. Once you have identified the analysis settings, you should work with your organization's administrator and save these settings as part of a new or existing travel mode so that everyone in your organization can rerun the analysis with the same settings. By choosing Custom, the values you set for the custom travel mode parameters are included in the analysis. Specifying another travel mode, as defined by your organization, causes any values you set for the custom travel mode parameters to be ignored; the tool overrides them with values from your specified travel mode.", "direction": "esriGPParameterDirectionInput", "defaultValue": "Custom", "parameterType": "esriGPParameterTypeOptional", "category": "" }, { "name": "impedance", "dataType": "GPString", "displayName": "Impedance", "description": "Specify the \nimpedance, which is a value that represents the effort or cost of traveling along road segments or on other parts of the transportation network. Travel time is an impedance; a car taking one minute to travel a mile along an empty road is an example of impedance. Travel times can vary by travel mode\u2014a pedestrian may take more than 20 minutes to walk the same mile\u2014so it is important to choose the right impedance for the travel mode you are modeling. Choose from the following impedance values: Drive Time\u2014Models travel times for a car. These travel times are static for each road and don't fluctuate with traffic. Truck Time\u2014Models travel times for a truck. These travel times are static for each road and don't fluctuate with traffic. Walk Time\u2014Models travel times for a pedestrian. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value.", "direction": "esriGPParameterDirectionInput", "defaultValue": "Drive Time", "parameterType": "esriGPParameterTypeOptional", "category": "Custom Travel Mode", "choiceList": [ "Drive Time", "Truck Time", "Walk Time" ] }, { "name": "time_zone_usage_for_time_fields", "dataType": "GPString", "displayName": "Time Zone Usage for Time Fields", "description": "Specifies the time zone for the input date-time fields supported by the tool. This parameter specifies the time zone for the following fields: TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2, TimeWindowEnd2, InboundArriveTime, and OutboundDepartTime on orders. TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2, and TimeWindowEnd2 on depots. EarliestStartTime and LatestStartTime on routes. TimeWindowStart and TimeWindowEnd on breaks.\n GEO_LOCAL\n \u2014 The date-time values associated with the orders or depots are in the time zone in which the orders and depots are located. For routes, the date-time values are based on the time zone in which the starting depot for the route is located. If a route does not have a starting depot, all orders and depots across all the routes must be in a single time zone. For breaks, the date-time values are based on the time zone of the routes. For example, if your depot is located in an area that follows eastern standard time and has the first time window values (specified as TimeWindowStart1 and TimeWindowEnd1) of 8 AM and 5 PM, the time window values will be treated as 8:00 a.m. and 5:00 p.m. eastern standard time. UTC\n \u2014 The date-time values associated with the orders or depots are in the in coordinated universal time (UTC) and are not based on the time zone in which the orders or depots are located. For example, if your depot is located in an area that follows eastern standard time and has the first time window values (specified as TimeWindowStart1 and TimeWindowEnd1) of 8 AM and 5 PM, the time window values will be treated as 12:00 p.m. and 9:00 p.m. eastern standard time assuming the eastern standard time is obeying the daylight saving time. Specifying the date-time values in UTC is useful if you do not know the time zone in which the orders or depots are located or when you have orders and depots in multiple time zones, and you want all the date-time values to start simultaneously. The UTC option is applicable only when your network dataset defines a time zone attribute. Otherwise, all the date-time values are always treated as GEO_LOCAL.", "direction": "esriGPParameterDirectionInput", "defaultValue": "GEO_LOCAL", "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis", "choiceList": [ "UTC", "GEO_LOCAL" ] }, { "name": "save_output_layer", "dataType": "GPBoolean", "displayName": "Save Output Network Analysis Layer", "description": "Specify if the tool should save the analysis settings as a network analysis layer file. You cannot directly work with this file even when you open the file in an ArcGIS Desktop application like ArcMap. It is meant to be sent to Esri Technical Support to diagnose the quality of results returned from the tool.\n Checked (True)\u2014Save the network analysis layer file. The file is downloaded in a temporary directory on your machine. In ArcGIS Pro, the location of the downloaded file can be determined by viewing the value for the Output Network Analysis Layer parameter in the entry corresponding to the tool execution in the Geoprocessing history of your Project. In ArcMap, the location of the file can be determined by accessing the Copy Location option in the shortcut menu on the Output Network Analysis Layer parameter in the entry corresponding to the tool execution in the Geoprocessing Results window. Unchecked (False)\u2014Do not save the network analysis layer file. This is the default.", "direction": "esriGPParameterDirectionInput", "defaultValue": false, "parameterType": "esriGPParameterTypeOptional", "category": "Output" }, { "name": "overrides", "dataType": "GPString", "displayName": "Overrides", "description": "Specify additional settings that can influence the behavior of the solver when finding solutions for the network analysis problems.\n The value for this parameter needs to be specified in JavaScript Object Notation (JSON). For example, a valid value is of the following form {\"overrideSetting1\" : \"value1\", \"overrideSetting2\" : \"value2\"}. The override setting name is always enclosed in double quotes. The values can be a number, Boolean, or string. The default value for this parameter is no\nvalue, which indicates not to override any solver\nsettings. Overrides are advanced settings that should be\nused only after careful analysis of the results obtained before and\nafter applying the settings. A list of supported override settings\nfor each solver and their acceptable values can be obtained by\ncontacting Esri Technical Support.", "direction": "esriGPParameterDirectionInput", "defaultValue": "", "parameterType": "esriGPParameterTypeOptional", "category": "Advanced Analysis" }, { "name": "save_route_data", "dataType": "GPBoolean", "displayName": "Save Route Data", "description": "Choose whether the output includes a zip file\nthat contains a file geodatabase holding the inputs and outputs of\nthe analysis in a format that can be used to share route layers\nwith ArcGIS Online or Portal for ArcGIS. Checked (True)\u2014Save the route data as a zip file. The file is downloaded in a temporary directory on your machine. In ArcGIS Pro, the location of the downloaded file can be determined by viewing the value for the Output Route Data parameter in the entry corresponding to the tool execution in the Geoprocessing history of your Project. In ArcMap, the location of the file can be determined by accessing the Copy Location option in the shortcut menu on the Output Route Data parameter in the entry corresponding to the tool execution in the Geoprocessing Results window. Unchecked (False)\u2014Do not save the route data. This is the default.", "direction": "esriGPParameterDirectionInput", "defaultValue": false, "parameterType": "esriGPParameterTypeOptional", "category": "Output" }, { "name": "out_unassigned_stops", "dataType": "GPRecordSet", "displayName": "Output Unassigned Stops", "description": "", "direction": "esriGPParameterDirectionOutput", "defaultValue": {}, "parameterType": "esriGPParameterTypeDerived", "category": "" }, { "name": "out_stops", "dataType": "GPRecordSet", "displayName": "Output Stops", "description": "", "direction": "esriGPParameterDirectionOutput", "defaultValue": {}, "parameterType": "esriGPParameterTypeDerived", "category": "" }, { "name": "out_routes", "dataType": "GPFeatureRecordSetLayer", "displayName": "Output Routes", "description": "", "direction": "esriGPParameterDirectionOutput", "defaultValue": {}, "parameterType": "esriGPParameterTypeDerived", "category": "" }, { "name": "out_directions", "dataType": "GPFeatureRecordSetLayer", "displayName": "Output Directions", "description": "", "direction": "esriGPParameterDirectionOutput", "defaultValue": {}, "parameterType": "esriGPParameterTypeDerived", "category": "" }, { "name": "solve_succeeded", "dataType": "GPBoolean", "displayName": "Solve Succeeded", "description": "", "direction": "esriGPParameterDirectionOutput", "defaultValue": null, "parameterType": "esriGPParameterTypeDerived", "category": "" }, { "name": "out_network_analysis_layer", "dataType": "GPDataFile", "displayName": "Output Network Analysis Layer", "description": "", "direction": "esriGPParameterDirectionOutput", "defaultValue": null, "parameterType": "esriGPParameterTypeDerived", "category": "" }, { "name": "out_route_data", "dataType": "GPDataFile", "displayName": "Output Route Data", "description": "", "direction": "esriGPParameterDirectionOutput", "defaultValue": null, "parameterType": "esriGPParameterTypeDerived", "category": "" } ] }